高中数学专题11 空间向量与立体几何解答题(含答案)
《高中数学专题11 空间向量与立体几何解答题(含答案)》由会员分享,可在线阅读,更多相关《高中数学专题11 空间向量与立体几何解答题(含答案)(76页珍藏版)》请在七七文库上搜索。
1、专题11空间向量与立体几何解答题考纲解读三年高考分析1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中
2、的应用.空间向量的计算和角度的求解是考查的重点,解题时常用到空间直角坐标系的建立、点和向量坐标的计算与应用,考查学生的数学抽象能力、数学建模能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的空间想象能力和逻辑推理能力.2、空间向量是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解题型以解答题为主,要求有较强的运算能力,广泛应用函数与方程的思想、转化与化归思想.1【2019年天津
3、理科17】如图,AE平面ABCD,CFAE,ADBC,ADAB,ABAD1,AEBC2()求证:BF平面ADE;()求直线CE与平面BDE所成角的正弦值;()若二面角EBDF的余弦值为,求线段CF的长【解答】()证明:以A为坐标原点,分别以,所在直线为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2)设CFh(h0),则F(1,2,h)则是平面ADE的法向量,又,可得又直线BF平面ADE,BF平面ADE;()解:依题意,设为平面BDE的法向量,则,令z1,得cos直线CE与平面BDE所成角的正弦值为;()解:设为平面BD
4、F的法向量,则,取y1,可得,由题意,|cos|,解得h经检验,符合题意线段CF的长为2【2019年新课标3理科19】图1是由矩形ADEB、RtABC和菱形BFGC组成的一个平面图形,其中AB1,BEBF2,FBC60将其沿AB,BC折起使得BE与BF重合,连结DG,如图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小【解答】证明:(1)由已知得ADBE,CGBE,ADCG,AD,CG确定一个平面,A,C,G,D四点共面,由已知得ABBE,ABBC,AB面BCGE,AB平面ABC,平面ABC平面BCGE解:(2)作EHBC,垂足为H,
5、EH平面BCGE,平面BCGE平面ABC,EH平面ABC,由已知,菱形BCGE的边长为2,EBC60,BH1,EH,以H为坐标原点,的方向为x轴正方向,建立如图所求的空间直角坐标系Hxyz,则A(1,1,0),C(1,0,0),G(2,0, ),(1,0,),(2,1,0),设平面ACGD的法向量(x,y,z),则,取x3,得(3,6,),又平面BCGE的法向量为(0,1,0),cos,二面角BCGA的大小为303【2019年全国新课标2理科17】如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角
6、BECC1的正弦值【解答】证明:(1)长方体ABCDA1B1C1D1中,B1C1平面ABA1B1,B1C1BE,BEEC1,BE平面EB1C1解:(2)以C为坐标原点,建立如图所示的空间直角坐标系,设AEA1E1,BE平面EB1C1,BEEB1,AB1,则E(1,1,1),A(1,1,0),B1(0,1,2),C1(0,0,2),C(0,0,0),BCEB1,EB1面EBC,故取平面EBC的法向量为(1,0,1),设平面ECC1 的法向量(x,y,z),由,得,取x1,得(1,1,0),cos,二面角BECC1的正弦值为4【2019年新课标1理科18】如图,直四棱柱ABCDA1B1C1D1的底
7、面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值【解答】(1)证明:如图,过N作NHAD,则NHAA1,且,又MBAA1,MB,四边形NMBH为平行四边形,则NMBH,由NHAA1,N为A1D中点,得H为AD中点,而E为BC中点,BEDH,BEDH,则四边形BEDH为平行四边形,则BHDE,NMDE,NM平面C1DE,DE平面C1DE,MN平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(,2),M(,1,2),A
8、1(,1,4),设平面A1MN的一个法向量为,由,取x,得,又平面MAA1的一个法向量为,cos二面角AMA1N的正弦值为5【2019年北京理科16】如图,在四棱锥PABCD中,PA平面ABCD,ADCD,ADBC,PAADCD2,BC3E为PD的中点,点F在PC上,且()求证:CD平面PAD;()求二面角FAEP的余弦值;()设点G在PB上,且判断直线AG是否在平面AEF内,说明理由【解答】证明:()PA平面ABCD,PACD,ADCD,PAADA,CD平面PAD解:()以A为原点,在平面ABCD内过A作CD的平行线为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,A(0,0,0),E(1
9、,0,1),F(,),P(0,0,2),(1,0,1),(),平面AEP的法向量(1,0,0),设平面AEF的法向量(x,y,z),则,取x1,得(1,1,1),设二面角FAEP的平面角为,则cos二面角FAEP的余弦值为()直线AG不在平面AEF内,理由如下:点G在PB上,且G(,0,),(,0,),平面AEF的法向量(1,1,1),0,故直线AG不在平面AEF内6【2019年江苏16】如图,在直三棱柱ABCA1B1C1中,D,E分别为BC,AC的中点,ABBC求证:(1)A1B1平面DEC1;(2)BEC1E【解答】证明:(1)在直三棱柱ABCA1B1C1中,D,E分别为BC,AC的中点,
10、DEAB,ABA1B1,DEA1B1,DE平面DEC1,A1B1平面DEC1,A1B1平面DEC1解:(2)在直三棱柱ABCA1B1C1中,E是AC的中点,ABBCBEAA1,BEAC,又AA1ACA,BE平面ACC1A1,C1E平面ACC1A1,BEC1E7【2019年浙江19】如图,已知三棱柱ABCA1B1C1,平面A1ACC1平面ABC,ABC90,BAC30,A1AA1CAC,E,F分别是AC,A1B1的中点()证明:EFBC;()求直线EF与平面A1BC所成角的余弦值【解答】方法一:证明:()连结A1E,A1AA1C,E是AC的中点,A1EAC,又平面A1ACC1平面ABC,A1E平
11、面A1ACC1,平面A1ACC1平面ABCAC,A1E平面ABC,A1EBC,A1FAB,ABC90,BCA1F,BC平面A1EF,EFBC解:()取BC中点G,连结EG、GF,则EGFA1是平行四边形,由于A1E平面ABC,故A1EEG,平行四边形EGFA1是矩形,由()得BC平面EGFA1,则平面A1BC平面EGFA1,EF在平面A1BC上的射影在直线A1G上,连结A1G,交EF于O,则EOG是直线EF与平面A1BC所成角(或其补角),不妨设AC4,则在RtA1EG中,A1E2,EG,O是A1G的中点,故EOOG,cosEOG,直线EF与平面A1BC所成角的余弦值为方法二:证明:()连结A
12、1E,A1AA1C,E是AC的中点,A1EAC,又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABCAC,A1E平面ABC,如图,以E为原点,EC,EA1所在直线分别为y,z轴,建立空间直角坐标系,设AC4,则A1(0,0,2),B(),B1(),F(),C(0,2,0),(),(),由0,得EFBC解:()设直线EF与平面A1BC所成角为,由()得(),(0,2,2),设平面A1BC的法向量(x,y,z),则,取x1,得(1,),sin,直线EF与平面A1BC所成角的余弦值为8【2018年江苏15】在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1
13、求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC【解答】证明:(1)平行六面体ABCDA1B1C1D1中,ABA1B1, ABA1B1,AB平面A1B1C,A1B1平面A1B1CAB平面A1B1C;(2)在平行六面体ABCDA1B1C1D1中,AA1AB,四边形ABB1A1是菱形,AB1A1B在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1AB1BCAB1面A1BC,且AB1平面ABB1A1平面ABB1A1平面A1BC9【2018年江苏25】如图,在正三棱柱ABCA1B1C1中,ABAA12,点P,Q分别为A1B1,BC的中点(1)求异面直线BP与AC1所成
14、角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值【解答】解:如图,在正三棱柱ABCA1B1C1中,设AC,A1C1的中点分别为O,O1,则,OBOC,OO1OC,OO1OB,故以为基底,建立空间直角坐标系Oxyz,ABAA12,A(0,1,0),B(,0,0),C(0,1,0),A1(0,1,2),B1(,0,2),C1(0,1,2)(1)点P为A1B1的中点,|cos|异面直线BP与AC1所成角的余弦值为:;(2)Q为BC的中点Q(),设平面AQC1的一个法向量为(x,y,z),由,可取(,1,1),设直线CC1与平面AQC1所成角的正弦值为,sin|cos|,直线CC1与平面AQ
15、C1所成角的正弦值为10【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,由于四边形ABCD为正方形,所以EFBC由于PFBF,EFPFF,则BF平面PEF又因为BF平面ABFD,所以:平面PEF平面ABFD(2)在平面PEF中,过P作PHEF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PHEF,则PH面ABFD,故PHDH在三棱锥PDEF中,可以
16、利用等体积法求PH,因为DEBF且PFBF,所以PFDE,又因为PDFCDF,所以FPDFCD90,所以PFPD,由于DEPDD,则PF平面PDE,故VFPDE,因为BFDA且BF面PEF,所以DA面PEF,所以DEEP设正方形边长为2a,则PD2a,DEa在PDE中,所以,故VFPDE,又因为,所以PH,所以在PHD中,sinPDH,即PDH为DP与平面ABFD所成角的正弦值为:11【2018年新课标2理科20】如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值【
17、解答】(1)证明:连接BO,ABBC2,O是AC的中点,BOAC,且BO2,又PAPCPBAC4,POAC,PO2,则PB2PO2+BO2,则POOB,OBACO,PO平面ABC;(2)建立以O坐标原点,OB,OC,OP分别为x,y,z轴的空间直角坐标系如图:A(0,2,0),P(0,0,2),C(0,2,0),B(2,0,0),(2,2,0),设(2,2,0),01则(2,2,0)(2,2,0)(22,2+2,0),则平面PAC的法向量为(1,0,0),设平面MPA的法向量为(x,y,z),则(0,2,2),则2y2z0,(22)x+(2+2)y0令z1,则y,x,即(,1),二面角MPAC
18、为30,cos30|,即,解得或3(舍),则平面MPA的法向量(2,1),(0,2,2),PC与平面PAM所成角的正弦值sin|cos,|12【2018年新课标3理科19】如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求面MAB与面MCD所成二面角的正弦值【解答】解:(1)证明:在半圆中,DMMC,正方形ABCD所在的平面与半圆弧所在平面垂直,AD平面DCM,则ADMC,ADDMD,MC平面ADM,MC平面MBC,平面AMD平面BMC(2)ABC的面积为定值,要使三棱锥MABC体积最大,则三
19、棱锥的高最大,此时M为圆弧的中点,建立以O为坐标原点,如图所示的空间直角坐标系如图正方形ABCD的边长为2,A(2,1,0),B(2,1,0),M(0,0,1),则平面MCD的法向量(1,0,0),设平面MAB的法向量为(x,y,z)则(0,2,0),(2,1,1),由2y0,2x+y+z0,令x1,则y0,z2,即(1,0,2),则cos,则面MAB与面MCD所成二面角的正弦值sin13【2018年浙江19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,ABC120,A1A4,C1C1,ABBCB1B2()证明:AB1平面A1B1C1;()求直线AC1与平面A
20、BB1所成的角的正弦值【解答】(I)证明:A1A平面ABC,B1B平面ABC,AA1BB1,AA14,BB12,AB2,A1B12,又AB12,AA12AB12+A1B12,AB1A1B1,同理可得:AB1B1C1,又A1B1B1C1B1,AB1平面A1B1C1(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,ABBC,OBOC,ABBC2,BAC120,OB1,OAOC,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,0),B(1,0,0),B1(1,0,2),C1(0,1),(1,0),(0,0,2),(0,2,1),设平面ABB1的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学专题11 空间向量与立体几何解答题含答案 高中数学 专题 11 空间 向量 立体几何 解答 答案
链接地址:https://www.77wenku.com/p-98741.html