《【人教版】2018学年八年级数学上册《14.3.2.1运用平方差公式因式分解》ppt课件》由会员分享,可在线阅读,更多相关《【人教版】2018学年八年级数学上册《14.3.2.1运用平方差公式因式分解》ppt课件(22页珍藏版)》请在七七文库上搜索。
1、14.3.2 公式法,第十四章 整式的乘法与因式分解,导入新课,讲授新课,当堂练习,课堂小结,第1课时 运用平方差公式因式分解,八年级数学上(RJ)教学课件,1.探索并运用平方差公式进行因式分解,体会转化 思想(重点) 2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点),导入新课,情境引入,如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?,a2- b2=(a+b)(a-b),讲授新课,想一想:多项式a2-b2有什么特点?你能将它分解因式吗?,是a,b两数的平方差的形式,两个数的平方差,等于这两个数的和与这两
2、个数的差的乘积.,平方差公式:,辨一辨:下列多项式能否用平方差公式来分解因式,为什么?,两数是平方, 减号在中央,(1)x2+y2,(2)x2-y2,(3)-x2-y2,-(x2+y2),y2-x2,(4)-x2+y2,(5)x2-25y2,(x+5y)(x-5y),(6)m2-1,(m+1)(m-1),例1 分解因式:,a,a,b,b,a2 - b2 =,解:(1)原式=,2x,3,2x,2x,3,3,(2)原式,整体思想,a,b,典例精析,方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.,分解因式: (1)(ab)2
3、4a2; (2)9(mn)2(mn)2.,针对训练,(2m4n)(4m2n),解:(1)原式(ab2a)(ab2a),(ba)(3ab);,(2)原式(3m3nmn)(3m3nmn),4(m2n)(2mn),当场编题,考考你!,例2 分解因式:,解:(1)原式(x2)2-(y2)2,(x2+y2)(x2-y2),(x2+y2)(x+y)(x-y);,(2)原式ab(a2-1),ab(a+1)(a-1).,方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止,分解因式: (1)5m2a45m2b4; (2)a24b2a2b.,
4、针对训练,(a2b)(a2b1).,5m2(a2b2)(ab)(ab);,解:(1)原式5m2(a4b4),5m2(a2b2)(a2b2),(2)原式(a24b2)(a2b),(a2b)(a2b)(a2b),例3 已知x2y22,xy1,求x-y,x,y的值,xy2.,解:x2y2(xy)(xy)2,,xy1,,联立组成二元一次方程组,,解得,方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.,例4 计算下列各题: (1)1012992; (2)53.524-46.524.,解:(1)原式(10199)(10199)400;,(2)
5、原式4(53.5246.52),=4(53.546.5)(53.546.5),41007=2800.,方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.,例5 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除,即多项式(2n+1)2-(2n-1)2一定能被8整除,证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,,n为整数,,8n被8整除,,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除,1.下列多项式中能用平方差公式分解因式的是( ) Aa2(b)2 B5m220mn Cx2y2
6、 Dx29,当堂练习,D,2.分解因式(2x+3)2 -x2的结果是( ) A3(x2+4x+3) B3(x2+2x+3) C(3x+3)(x+3) D3(x+1)(x+3),D,3.若a+b=3,a-b=7,则b2-a2的值为( ),A-21 B21 C-10 D10,A,4.把下列各式分解因式: (1) 16a2-9b2=_; (2) (a+b)2-(a-b)2=_; (3) 9xy3-36x3y=_; (4) -a4+16=_.,(4a+3b)(4a-3b),4ab,9xy(y+2x)(y-2x),(4+a2)(2+a)(2-a),5.若将(2x)n-81分解成(4x2+9)(2x+3)
7、(2x-3),则n的值是_.,4,6.已知4m+n=40,2m-3n=5求(m+2n)2-(3m-n)2的值,原式=-405=-200,解:原式=(m+2n+3m-n)(m+2n-3m+n),=(4m+n)(3n-2m),=-(4m+n)(2m-3n),,当4m+n=40,2m-3n=5时,,7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积,解:根据题意,得,6.8241.62,6.82 (21.6)2,6.823.22,(6.83.2)(6.8 3.2),103.6,36 (cm2),答:剩余部分的面积为36 cm2.,8. (1)992-1能否被100整除吗?,解:(1)因为 992-1=(99+1)(99-1)=10098,,所以,(2n+1)2-25能被4整除.,(2)n为整数,(2n+1)2-25能否被4整除?,所以992-1能否被100整除.,(2)原式=(2n+1+5)(2n+1-5),=(2n+6)(2n-4),=2(n+3) 2(n-2)=4(n+3)(n-2).,课堂小结,平方差公式分解因式,公式,a2-b2=(a+b)(a-b),步骤,一提:公因式; 二套:公式; 三查:多项式的因式分解有没有分解到不能再分解为止.,
链接地址:https://www.77wenku.com/p-9901.html