高中数学考点13三角函数的图象与性质
《高中数学考点13三角函数的图象与性质》由会员分享,可在线阅读,更多相关《高中数学考点13三角函数的图象与性质(53页珍藏版)》请在七七文库上搜索。
1、高中数学考点13 三角函数的图象与性质1理解正弦函数的图象与性质.2理解余弦函数的图象与性质.3理解正切函数的图象与性质.4了解三角函数的周期性.5了解函数的实际意义,掌握的图象,了解参数A,对函数图象变化的影响.一、正弦函数,余弦函数,正切函数的图象与性质函数图象定义域值域最值当时,;当时,当时,;当时,既无最大值,也无最小值周期性最小正周期为最小正周期为最小正周期为奇偶性,奇函数,偶函数,奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心;对称轴,既是中心对称图形又是轴对称图形.对称中心;对称轴,既是中心对称图形又是轴对称图形.对称中心;无对称轴,是
2、中心对称图形但不是轴对称图形.二、函数的图象与性质1函数的图象的画法(1)变换作图法由函数的图象通过变换得到(A0,0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图. (2)五点作图法找五个关键点,分别为使y取得最小值、最大值的点和曲线与x轴的交点.其步骤为: 先确定最小正周期T=,在一个周期内作出图象; 令,令X分别取0,,求出对应的x值,列表如下:由此可得五个关键点; 描点画图,再利用函数的周期性把所得简图向左右分别扩展,从而得到的简图.2函数(A0,0)的性质(1)奇偶性:时,函数为奇函数;时,函数为偶函数. (2)周期性:存在周期性,其最小正周期为T= .(3)单
3、调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间. (4)对称性:利用y=sin x的对称中心为求解,令,求得x. 利用y=sin x的对称轴为求解,令,得其对称轴.3函数(A0,0)的物理意义当函数(A0,0,)表示一个简谐振动量时,则A叫做振幅,T=叫做周期,f =叫做频率,叫做相位,x=0时的相位叫做初相.三、三角函数的综合应用(1)函数,的定义域均为;函数的定义域均为.(2)函数,的最大值为,最小值为;函数的值域为.(3)函数,的最小正周期为;函数的最小正周期为(4)对于,当且仅当时为奇函数,当且仅当时为偶函数;对于,当且仅当时为奇函数,当且仅当时为偶函数;对
4、于,当且仅当时为奇函数 (5)函数的单调递增区间由不等式来确定,单调递减区间由不等式来确定;函数的单调递增区间由不等式来确定,单调递减区间由不等式来确定;函数的单调递增区间由不等式来确定【注】函数,(有可能为负数)的单调区间:先利用诱导公式把化为正数后再求解(6)函数图象的对称轴为,对称中心为;函数图象的对称轴为,对称中心为;函数图象的对称中心为.【注】函数,的图象与轴的交点都为对称中心,过最高点或最低点且垂直于轴的直线都为对称轴. 函数的图象与轴的交点和渐近线与轴的交点都为对称中心,无对称轴.考向一 三角函数的图象变换函数图象的平移变换解题策略(1)对函数y=sin x,y=Asin(x)或
5、y=Acos(x)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|个单位,都是相应的解析式中的x变为x|,而不是x变为x|.(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.典例1 将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数的图象,则在图象的所有对称轴中,离原点最近的对称轴为A BC D【答案】A【解析】将函数的图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到的图象,再将所得图象向左平移个单位得到函数的图象,即,由,得,则当时,离原点最近的对称轴方程为,故选A【名师点睛】(1)进行三角函数的图象
6、变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(2)在图象变换过程中务必分清是先相位变换,还是先周期变换变换只是相对于其中的自变量而言的,如果的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向1为了得到函数的图象,可以将函数的图象A向左平移个单位长度 B向右平移个单位长度C向左平移个单位长度 D向右平移个单位长度考向二 确定三角函数的解析式结合图象及性质求解析式y=Asin(x)B(A0,0)的方法(1)求A,B,已知函数的最大值M和最小值m,则.(2)求,已知函数的周期T,则.(3)求,常用方法有:
7、代入法:把图象上的一个已知点代入(此时,A,B已知)五点法:确定值时,往往以寻找“五点法”中的第一个零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为x=0;“第二点”(即图象的“峰点”)为x=;“第三点”(即图象下降时与x轴的交点)为x=;“第四点”(即图象的“谷点”)为x=;“第五点”为x=2.典例2 已知函数f(x)=Asin(x+)A0,0,0)的单调区间时,要视“x”为一个整体,通过解不等式求解但如果0,|2),其图象相邻两条对称轴之间的距离为,将函数f(x)的图象向左平移个单位后,得到的图象关于y轴对称,那么函数f(x)的图象A关于点对称 B关于点
8、对称C关于直线对称 D关于直线对称考向四 函数的性质与其他知识的综合应用与三角恒等变换、平面向量、解三角形相结合的问题常先通过三角恒等变换、平面向量的有关知识化简函数解析式为y=Asin(x)B的形式,再结合正弦函数y=sinx的性质研究其相关性质,若涉及解三角形,则结合解三角形的相关知识求解典例5 已知向量,函数()的最小正周期是.(1)求的值及函数的单调递减区间;(2)当时,求函数的值域.【解析】(1) ,又的最小正周期为,.令,得,函数的单调递减区间为.(2),,故的值域为.典例6 已知函数fx=23sin24+x+2sin4+xcos4+x.(1)求函数fx的单调递增区间;(2)在AB
9、C中,内角A,B,C所对的边分别为a,b,c,且角A满足fA=3+1,若a=3,BC边上的中线长为3,求ABC的面积S.【解析】(1)fx=23sin24+x+2sin4+xcos4+x=31-cos2+2x+sin2+2x=3sin2x+cos2x+3=2sin2x+6+3.令,得,所以函数的单调递增区间为,.(2),因为,所以,所以,则,又BC上的中线长为3,所以AC+AB=6,所以AC2+AB2+2ACAB=36,即b2+c2+2bccosA=36,所以b2+c2+bc=36,由余弦定理得a2=b2+c2-2bccosA,所以b2+c2-bc=9,由得:bc=272,所以SABC=12b
10、csinA=2738.7已知函数.(1)求的最小正周期;(2)设的内角,的对边分别为,且,若,求,的值.1函数的最小正周期为ABCD2函数f(x)=cos2x2sinx的最大值与最小值的和是A2B0CD3函数的一个单调递增区间是A BC D4函数的图象的大致形状是A B C D 5已知函数,则下列结论中正确的是A既是奇函数又是周期函数 B的图象关于直线对称C的最大值为1 D在区间上单调递减6已知函数的部分图象如图所示,现将函数图象上的所有点向右平移个单位长度得到函数的图象,则函数的解析式为A BC D7已知函数(),若,且,则A B C D8已知函数,则的最小正周期是_,当时,的取值范围是_9
11、已知函数,是函数图象上相邻的最高点和最低点,若,则_10已知函数f(x)=Asin(x+)(其中A0,2)的图象如图所示,为了得到g(x)=sin3x的图象,只需将f(x)的图象向右平移_个单位长度.11将函数fx=2sin2x+0的图象向左平移3个单位长度,得到偶函数gx的图象,则的最大值是_12已知函数fx=sinx+03,2,若f-12=f512=0,则f=_13已知函数(1)求的值;(2)求函数的最小正周期和单调递增区间14已知函数fx=3sinxcosx+sin2x-1200)两个相邻的极值点,则=A2BC1D3(2019年高考全国卷文数)函数在0,2的零点个数为A2 B3 C4D5
12、4(2019年高考全国卷理数)关于函数有下述四个结论:f(x)是偶函数f(x)在区间(,)单调递增f(x)在有4个零点f(x)的最大值为2其中所有正确结论的编号是A BCD5(2019年高考全国卷理数)下列函数中,以为周期且在区间(,)单调递增的是Af(x)=|cos2x| Bf(x)=|sin2x| Cf(x)=cos|x| Df(x)=sin|x|6(2019年高考全国卷理数)设函数=sin()(0),已知在有且仅有5个零点,下述四个结论:在()有且仅有3个极大值点在()有且仅有2个极小值点在()单调递增的取值范围是)其中所有正确结论的编号是ABCD7(2019年高考北京卷文数)设函数f(
13、x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件8(2019年高考天津卷文数)已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则A2BCD29(2018年高考全国卷文数)函数的最小正周期为ABCD10(2018年高考全国卷文数)已知函数,则A的最小正周期为,最大值为3B的最小正周期为,最大值为4C的最小正周期为,最大值为3D的最小正周期为,最大值为411(2018年高考天津卷文数)将函数的图象向右平移个单位长度,所得图象对应的
14、函数A在区间上单调递增B在区间上单调递减C在区间上单调递增D在区间上单调递减12(2018年高考全国卷文理数)若在是减函数,则的最大值是ABC D13(2017年高考全国卷文数)函数的最小正周期为A BC D 14(2017年高考全国卷文数)函数的最大值为A B1C D 15(2017年高考全国理数)已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩
15、短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C216(2017年高考全国理数)设函数,则下列结论错误的是A的一个周期为B的图象关于直线对称C的一个零点为D在(,)单调递减17(2017年高考天津卷文数)设函数,其中若且的最小正周期大于,则ABCD18(2019年高考全国卷文数)函数的最小值为_19(2019年高考北京卷理数)函数f(x)=sin22x的最小正周期是_20(2018年高考江苏卷)已知函数的图象关于直线对称,则的值是_21(2019年高考浙江卷)设函数.(1)已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 考点 13 三角函数 图象 性质
链接地址:https://www.77wenku.com/p-99095.html