欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.1.1第2课时集合的表示方法 学案含答案

第一章 集合与常用逻辑用语 1.11.1 集合的概念集合的概念 第第2 2课时课时 集合的表示集合的表示 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.初步掌握集合的两种表示方法 列举法描述法,感受集合语 言的,第2课时向量平行的坐标表示 学习目标1.理解用坐标表示的平

1.1.1第2课时集合的表示方法 学案含答案Tag内容描述:

1、第一章 集合与常用逻辑用语 1.11.1 集合的概念集合的概念 第第2 2课时课时 集合的表示集合的表示 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.初步掌握集合的两种表示方法 列举法描述法,感受集合语 言的。

2、第2课时向量平行的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点向量平行的坐标表示1向量平行的坐标表示(1)条件:a(x1,y1),b(x2,y2),a0.(2)结论:如果ab,那么x1y2x2y10;如果x1y2x2y10,那么ab.2若,则P与P1,P2三点共线(1)当(0,)时,P位于线段P1,P2的内部,特别地,当1时,P为线段P1P2的中点(2)当(,1)时,P在线段P1P2的延长线上(3)当(1,0)时,P在线段P1P2的反向延长线上1若向量a(x1,y1),b(x2,y2),且ab,则.()提示当y1y20时不成立2若向量a。

3、第第 2 2 课时课时 不等式的证明方法不等式的证明方法 学习目标 1.掌握综合法、分析法证明问题的过程和推理特点,能灵活选用综合法、分析法 证明简单问题.2.了解反证法的定义,掌握反证法的推理特点掌握反证法证明问题的一般步 骤,能用反证法证明一些简单的命题 知识点一 综合法 从已知条件出发,综合利用各种结果,经过逐步推导最后得到结论的方法综合法最重要的 推理形式为 pq,其中 p 是已知或者已。

4、第一章 集合与函数概念1.1 集 合11.1 集合的含义与表示第 1 课时 集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用1元素与集合的概念(1)把_统称为元素,通常用_表示(2)把_叫做集合( 简称为集),通常用_表示2集合中元素的特性:_、_、_.3集合相等:只有构成两个集合的元素是_的,才说这两个集合是相等的4元素与集合的关系关系 概念 记法 读法属于 如果_的元素,就说 a 属于集合 A aA a 属于集合 A元素与集合的关系 不属于 如果_中的元素,就。

5、1 1. .1.11.1 集合及其表示方法集合及其表示方法 第第 1 课时课时 集合的概念及几种常见的数集集合的概念及几种常见的数集 学习目标 1.通过实例了解集合的含义.2.理解集合中元素的特点.3.体会元素与集合的“属 于”关系,记住常用数集的表示符号并会应用.4.理解集合相等的概念. 知识点一 元素与集合的概念 1.集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合.。

6、第2课时集合的表示一、填空题1方程组的解集不可以表示为_(x,y)|;(x,y)|;1,2;(1,2)答案解析方程组的集合中最多含有一个元素,且元素是一个有序实数对,故不符合2集合Ax|2x3,xZ的元素个数为_答案4解析因为Ax|2x3,xZ,所以x的取值为1,0,1,2.3点集(x,y)|y2x1表示的图形是_答案直线y2x1解析集合(x,y)|y2x1的代表元素是(x,y),x,y满足的关系式为y2x1,因此集合表示的是满足关系式y2x1的点组成的集合4方程x25x60的解集可表示为_答案2,3解析易知方程x25x60的解为x2或3,则方程的解集为2,35集合x|x2x20,xN用列举法可表示为_答案1解析。

7、第2课时集合的表示基础过关1用列举法表示集合x|x22x10为()A1,1 B1Cx1 Dx22x10解析集合x|x22x10实质是方程x22x10的解集,此方程有两相等实根为1,故可表示为1故选B.答案B2集合1,5,9,13,17用描述法表示,其中正确的是()Ax|x是小于18的正奇数Bx|x4k1,kZ,且k5Cx|x4t3,tN,且t5Dx|x4s3,sN*,且s6答案D3给出下列说法:任意一个集合的正确表示方法是唯一的;集合Px|0x1是无限集;集合x|xN*,x50,1,2,3,4;第二、四象限内的点集可表示为(x,y)|xy0,xR,yR其中正确说法的序号是()A B C D解析对于某些集合(如小于10的自然数组成的集合。

8、第2课时集合的表示基础过关1.下列集合中,不同于另外三个集合的是()A.0 B.y|y20C.x|x0 D.x0解析A是列举法,C是描述法,对于B要注意集合的代表元素是y,故与A,C相同,而D表示该集合含有一个元素,即方程“x0”.故选D.答案D2.如图所示,图中阴影部分(含边界)的点的坐标的集合表示为()A.1x3,且0y3B.(x,y)|1x3,且0y3C.(x,y)|1x3,且0y3D.(x,y)|1x3,或0y3解析图中阴影部分点的横坐标为1x3,纵坐标为0y3,故用描述法可表示为(x,y)|1x3,且0y3.答案B3.集合xN*|x32用列举法可表示为_.解析xN*|x32xN*|x51,2,3,4.答案1,2,3,44.已知xN。

9、第2课时集合的表示一、选择题1.下列集合中,是空集的是()A.x|x233B.(x,y)|yx2,x,yRC.x|x20D.x|x2x10考点空集的定义、性质及运算题点空集的定义答案D解析x|x2330;函数yx2的图像上有无数多个点,(x,y)|yx2,x,yR为无限集;x|x200;方程x2x10,判别式140,xA,则B等于()A.1,0 B.1 C.0,1 D.1考点集合的表示题点用另一种方法表示集合答案D3.集合AxZ|2x3的元素个数为()A.1 B.2 C.3 D.4考点用描述法表示集合题点用描述法表示集合答案D解析因为AxZ|2x3,所以x的取值为。

10、1.1.1 第2课时 集合的表示方法 1.掌握集合的两种表示方法(列举法、描述法). 2.能够运用集合的两种表示方法表示一些简单集合. 学习目标 1.质数又称素数,指在大于1的自然数中,除了 和_ 外,不能被其他正整数整除的数. 2.函数yx22x1的图象与x轴有 个交点,函数yx22x1的 图象与x轴有 个交点,函数yx2x1的图象与x轴 交点. 没有 1此整数自身 。

11、1集合的含义与表示第1课时集合的含义学习目标1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题.3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一元素与集合的概念1.集合:一般地,指定的某些对象的全体称为集合.集合常用大写字母A,B,C,D,标记.2.元素:集合中的每个对象叫作这个集合的元素.常用小写字母a,b,c,d,表示集合中的元素.知识点二元素与集合的关系元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为、.知识点三元素的三个特性元素的三个特性是指确定性、互异性。

12、第第 2 2 课时课时 函数的表示方法函数的表示方法 学习目标 1.了解函数的三种表示法及各自的优缺点, 会根据不同需要选择恰当的方法表示 函数.2.掌握求函数解析式的常用方法.3.会作函数的图像并从图像上获取有用信息 知识点 函数的表示方法 思考 函数三种表示法的优缺点各有哪些? 答案 1任何一个函数都可以用解析法表示( ) 2任何一个函数都可以用图像法表示( ) 3函数 f(x)2x1。

13、第 2 课时 集合的表示课时目标 1.掌握集合的两种表示方法( 列举法、描述法).2. 能够运用集合的两种表示方法表示一些简单集合1列举法把集合的元素_出来,并用花括号“ ”括起来表示集合的方法叫做列举法2描述法用集合所含元素的共同特征表示集合的方法称为_不等式 x76 的解的集合;大于 0.5 且不大于 6 的自然数的全体构成的集合11已知集合 Ax| yx 2 3,By|y x 23,C(x,y )|yx 23,它们三个集合相等吗?试说明理由能力提升12下列集合中,不同于另外三个集合的是( )A x|x1 B y|(y1) 20Cx1 D113已知集合 Mx |x ,kZ ,N x|x ,k Z ,若 x0M。

14、第第 2 2 课时课时 集合的表示集合的表示 学习目标 1.初步掌握集合的两种表示方法列举法、描述法,感受集合语言的意义和作 用.2.会用集合的两种表示方法表示一些简单集合.3.理解集合相等、有限集、无限集、空集等 概念 知识点一 集合的表示法 1列举法:将集合的元素一一列举出来,并置于花括号“ ”内,元素之间用逗号分隔, 这样表示集合的方法称为列举法 2描述法:将集合的所有元素都具有的性质(满。

15、第2课时集合的表示学习目标1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.4.理解集合相等、有限集、无限集、空集等概念知识点一集合的表示法(1)列举法:将集合的元素一一列举出来,并置于花括号“”内,元素之间用逗号分隔,这样表示集合的方法称为列举法(2)描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成x|p(x)的形式,这样表示集合的方法称为描述法知识点二集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两。

16、第2课时集合的表示学习目标1.了解空集、有限集、无限集的概念.2.会用列举法表示有限集.3.理解描述法的格式及其适用情形.4.学会在不同的集合表示法中作出选择和转换.知识点一集合的分类按集合中的元素个数分类,不含有任何元素的集合叫作空集,记作;含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集.知识点二列举法把集合中的元素一一列举出来写在大括号内的方法叫作列举法.适用于元素较少的集合.思考用列举法表示不大于6的正整数构成的集合.答案1,2,3,4,5,6知识点三描述法描述法:用确定的条件表示某些对象属于一个集合并写。

17、第2课时集合的表示学习目标1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.知识点一列举法把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫做列举法.适用于元素较少的集合.思考用列举法表示不大于6的正整数构成的集合.答案1,2,3,4,5,6知识点二描述法描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写元素的一般符号及取值(或变化)范围,竖线后写元素所具有的共同特征.思考选择适当的方法表示下列集合:(1)方程(x1)(x2)0的实数。

18、第2课时表示集合的方法基础过关1下列关系式中,正确的是()A2,33,2B(a,b)(b,a)Cx|yx21y|yx1Dy|yx21x|yx1答案C解析A中2,33,2,集合元素具有无序性;B中集合中的点不同,故集合不同;C中x|yx21y|yx1R;D中y|yx21y|y1x|yx1R.故选C.2方程组的解集是()Ax1,y1B1C(1,1)D(1,1)答案C解析方程组的解集中元素应是有序数对形式,排除A,B,而D不是集合的形式,排除D.3集合M(x,y)|xy0,xR,yR是()A第一象限内的点集B第三象限内的点集C第四象限内的点集D第二、四象限内的点集答案D解析因为xy0,所以有x0,y0;或者x0,y0.因此集合M表示的点集在第四象。

19、第2课时表示集合的方法学习目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.3.能记住各类区间的含义及其符号,会用区间表示集合知识链接1质数又称素数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数(不包括0)整除的数2函数yx22x1的图象与x轴有2个交点,函数yx22x1的图象与x轴有1个交点,函数yx2x1的图象与x轴没有交点预习导引1列举法(1)把集合中的元素一个一个地写出来表示集合的方法,叫作列举法(2)用列举法表示集合,通用的格式是在一个大括号里写出每个元素的名字,。

20、第第 2 2 课时课时 集合的表示方法集合的表示方法 学习目标 1.掌握集合的两种表示方法 2.了解集合的两种表示方法的适用情况,并能在两种 表示法中作出选择和转换.3.掌握区间的概念及表示方法 知识点一 列举法 把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集 合的方法称为列举法 注意:(1)元素与元素之间必须用“,”隔开; (2)集合中的元素必须是明确的; 。

【1.1.1第2课时集合的表示方法 学案含答案】相关PPT文档
【1.1.1第2课时集合的表示方法 学案含答案】相关DOC文档
2.4向量的数量积(第2课时)向量平行的坐标表示 学案(含答案)
2.2.1(第2课时)不等式的证明方法 学案(含答案)
1.1.1(第1课时)集合的概念及几种常见的数集 学案(含答案)
1.1(第2课时)集合的表示 课时对点练(含答案)
1.1集合的含义与表示(第2课时)集合的表示 课后作业(含答案)
《1.1集合的含义及其表示(第2课时)集合的表示》课后作业含答案
1.1集合的含义与表示(第2课时)集合的表示 课时对点练(含答案)
集合的含义与表示 第1课时 集合的含义 学案(含答案)
3.1.1(第2课时)函数的表示方法 学案(含答案)
§1.1(第2课时)集合的表示 学案(含答案)
1.1(第2课时)集合的表示 学案(含答案)
集合的含义与表示 第2课时 集合的表示 学案(含答案)
1.1.1(第2课时)集合的表示 教学案
《1.1.1 集合的含义和表示(第2课时)表示集合的方法》课后作业(含答案)
1.1.1 集合的含义和表示(第2课时)表示集合的方法 学案(含答案)
1.1.1(第2课时)集合的表示方法 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开