欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.2.1 勾股定理 同步教案湘教版八年级数学下册

函数的表示法教学目标:1了解函数的三种不同的表示方法;(重点)2在实际情境中,会根据不同的需要,选择恰当的函数的表示方法;(重点)3函数三种表示方法的优点的认识(难点)教学过程:一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发

1.2.1 勾股定理 同步教案湘教版八年级数学下册Tag内容描述:

1、函数的表示法教学目标:1了解函数的三种不同的表示方法;(重点)2在实际情境中,会根据不同的需要,选择恰当的函数的表示方法;(重点)3函数三种表示方法的优点的认识(难点)教学过程:一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点:函数的表示方法【类型一】 用。

2、中心对称图形教学目标:1理解和掌握中心对称图形的概念和基本性质;(重点)2能利用中心对称图形的性质作图和解决实际问题(难点)教学过程:一、情境导入1观察下列三幅图形,看它们有何共同点和不同点?这三个图形都是绕着中心点旋转一定的角度后能与自身图形重合,它们都是旋转图形;2它们旋转的角度一样吗?它们旋转的角度分别是多少?其中图的旋转角度是 180度,它就是我们今天要探究的图形中心对称图形二、合作探究探究点:中心对称图形【类型一】 中心对称图形的识别下列图形是中心对称图形吗?如果是中心对称图形,在图中用点 O标出对称。

3、平移的坐标表示教学目标:1使学生掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律;(重点、难点)2使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念教学过程:一、情境导入同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移呢?二、合作探究探究点一:平面直角坐标系中点的平移将点(1,2)向左平移 1 个单位,再向下平移 2 个单位后得到的对应点的坐标是_解析:向左平移 1 个单位,横坐标减 1,向下平移 2 个单位,纵坐标减 2。

4、,第十七章 勾股定理,17.2 勾股定理的逆定理,第十七章 勾股定理,17.2 勾股定理的逆定理,考场对接,考场对接,题型一 识别二次根式,D,D,A,题型二 利用勾股定理的逆定理证明两条直线垂直或求夹角的大小,题型三 利用勾股定理及其逆定理求线段的长,题型六 运用勾股定理解决图形折叠问题,题型四 利用勾股定理及其逆定理求图形的面积,题型五 利用勾股定理的逆定理解决实际问题,题型六 用互逆定理的定义判断一个定理是否有逆定理,谢 谢 观 看!,。

5、正方形教学目标:1掌握正方形的概念、性质,并会运用;(重点)2理解正方形与平行四边形、矩形、菱形的联系和区别;(难点)3掌握正方形的判定条件;(重点)4合理地利用正方形的判定进行有关的论证和计算(难点)教学过程:一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形学生在动手过程中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形?二、合作探究探究点一:正方形的性质【类型一】 利用正方形的性质求线段长或证明如图所示,正方形 ABCD 的边长为 1, AC 是对角线, AE 平分 BAC, EF AC 于点。

6、矩形的判定教学目标:1掌握矩形的判定方法;(重点)2矩形的判定及性质的综合应用(难点)教学过程:一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形这是矩形的定义,我们可以依此判定一个四边形是矩形除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线相等且互相平分;2四个内角都是直角这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一角是直角的平行四边形是矩形已知:如图, ABC 中, AB AC, AD 是 BC 边上的高, AE 是 BA。

7、矩形的性质教学目标:1理解并掌握矩形的性质定理及推论;(重点)2会用矩形的性质定理及推论进行推导证明;(重点)3会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算(难点)教学过程:一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点 D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示二、合作探究探究点一:矩形的。

8、频数与频率教学目标:1理解频率的概念,理解样本容量、频数、频率之间的相互关系,会计算频率;(重点,难点)2了解频数、频率的一些简单实际应用教学过程:一、情境导入某医院 2 月份出生的 20 名新生婴儿的体重如下(单位:kg):4.7.2.9.3.2.3.5.3.6.4.8.4.3.3.6.3.8.3.4.3.4.3.5.2.8.3.3.4.0、4.5.3.6.3.5.3.7.3.7.已知这一组数的平均数为 3.69, s20.2749,请说明这组数据的平均数和方差能说明医院新生婴儿体重在哪一个范围内人数最多,在哪一个范围内人数最少?你能说出体重在3.553.95kg 这一范围内的婴儿数是多少吗?用什么方法?二、。

9、变量与函数教学目标:1了解常量、变量的概念;(重点)2了解函数的概念;(重点)3确定简单问题的函数关系(难点)教学过程:一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定你能举出一些类似的实例吗?二、合作探究探究点一:常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积 Scm2与球的半径 Rcm 的关系式是 S4 R2;(2)以。

10、菱形的判定教学目标:1理解和掌握菱形的判定方法;(重点)2合理利用菱形的判定方法进行论证和计算(难点)教学过程:一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形这是菱形的定义,我们可以根据定义来判定一个四边形是菱形除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线互相垂直平分;2四条边都相等;3每条对角线平分一组对角这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究探究点一:菱形的判定【类型一】 利用“有一组邻边相等的平行四边形是。

11、八年级下册数学(人教版)-第十七章- 勾股定理-同步提升练习(含答案)一、单选题1. ( 2 分 ) 直角三角形的两条直角边长分别为 4 和 6,那么斜边长是( )A. 2 B. 2 C. 52 D. 2. ( 2 分 )如图,点 A 在半径为 3 的 O 内,OA= ,P 为O 上一点,当 OPA 取最大值时,PA 的长等于( ).A. B. C. D. 3. ( 2 分 ) 下面各组数是三角形三边长,其中为直角三角形的是 ( )A. 8,12,15 B. 5,6 。

12、勾股定理检测题一 选择题( 每题3分,共21分)1. 已知ABC个边均为整数,且AC=4,BC=3,AB是唯一的最长边,则AB的长为( )A .5 B .6 C.7 D.5或62. 如果一直角三角形的两边长分别为3和5,则第三边长是( )A.4 B. C.4或 D。以上答案都不正确。 3. 如图所示,直线L过正方形ABCD的顶点B,点A,C到直线L的距离是1和2,则正方形ABCD的边长是( )A. B. C.3 D. (3题图) (7 题图)4. 在下列长度的各组线段中,是勾股数的一组是( )A0.3,4,0.5 B.6,8,10 C.4,5,6, D.,15. 。

13、勾股定理检测题一、填空题,(30分)1、 在RtABC中C= 则 (1)a=5 b=12 则 c=_(2) b=8 c=17 则 a=_2、 如果梯形低端离建筑物9m 那么15m长的梯形可达到建筑物的高度是_3、 直角三角形的两直角边长分别为3m 4m 则斜边长为_ 斜边上的高为_4、 在RtABC中C= 若 a:b=3:4 ,c=20,则a=_ b=_DBCA5、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_米6、如图所示,要从电线杆高4m 的点处向地面斜拉一根长5m的缆绳 固 定点A到电线。

14、频数直方图教学目标:1了解频数直方图的概念;2学会画频数直方图;(难点)3学会分析频数直方图获取信息(重点)教学过程:一、情境导入现实生活中,人们不仅要收集数据,还要对收集到的数据进行加工,进而作出判断观察下面一组图片,你能从中直接获取哪些信息?二、合作探究探究点:频数直方图【类型一】 绘制频数直方图为了了解某地区八年级学生的身高情况,现随机抽取了 60 名八年级男生,测得他们的身高(单位:cm)分别为:156 162 163 172 160 141 152 173 179 174157 174 145 160 153 165 156 167 161 172178 156 166 155 140 157 167 15。

15、第 1 页,共 10 页17.2 勾股定理的逆定理同步练习一、选择题1. 用 a、 b、 c 作三角形的三边,其中不能构成的直角三角形的是( )A. B. a: b: :2:b2=(a+c)(a-c) c=1 3C. , , D. , ,a=32 b=42 c=52 a=6 b=8 c=102. 已知一个三角形的三边长分别为 , ,2,则这个三角形的面积为( )2 6A. B. C. D. 22 23 2 33. 在 ABC 中, A, B, C 的对边分别为 a, b, c,且( a+b)( a-b)= c2,则( )A. 为直角 B. 为直角 A CC. 为直角 D. 不是直角三角形 B4. 下列结论中,错误的有( ) 在 Rt ABC 中,已知两边长分别为 3 和 4,则第三边的。

16、第 1 页,共 10 页17.1 勾股定理同步练习一、选择题1. 如图,在ABC 中,BAC=90,B=30,AC=5cm,ADBC 于 D,则 BD=( )A. 10cmB. 7.5cmC. 8.5cmD. 6.5cm2. 设直角三角形的两条直角边分别为 a和 b,斜边长为 c,已知 b=12,c=13,则a=( )A. 1 B. 5 C. 10 D. 253. 将一根 24cm的筷子,置于底面直径为 15cm,高 8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度 hcm,则h的取值范围是( )A. B. h 17cm h 8cmC. D. 15cm h 16cm 7cm h 16cm4. 在ABC 中,已知 AB=15,AC=13,BC 边上的高 AD=12,则ABC 的周长为( )A. 14 B. 42 C. 32。

17、勾股定理在实际生活中的应用知识点 勾股定理的实际应用1如果梯子的底端与某高楼竖直墙的距离为 5 米,那么 13 米长的梯子可以达到该楼的高度是( )A12 米 B13 米 C14 米 D15 米2一根旗杆在离地面 4.5 米的地方折断,旗杆顶端落在离旗杆底部 6 米处,则旗杆折断前高为( )A10.5 米 B7.5 米 C12 米 D8 米3如图 1213,某工程队沿 AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B 取ABD120,BD210 m,D30,要正好能使 A,C,E成一条直线,那么 E,D 两点之间的距离等于( )图 1213A105 m B210 m C70 m D105 m3 3 3。

18、勾股定理的逆定理知识点 1 勾股定理的逆定理1在ABC 中,AB6,AC8,BC10,则该三角形为( )A锐角三角形 B直角三角形C钝角三角形 D等腰直角三角形2以下列各组线段为边,能构成直角三角形的是( )A1 cm,2 cm,3 cm B. cm, cm, cm2 6 3C1 cm,2 cm, cm D2 cm,3 cm,4 cm33如图 1226,正方形网格中的ABC 的形状是( )图 1226A直角三角形 B锐角三角形C钝角三角形 D以上选项都不对4在ABC 中,a ,b ,c2 ,则这个三角形中最大的内角度数是2 6 2_5如图 1227,以ABC 的三边为边分别向外作正方形,它们的面积分别是S1,S2,S3,如果 S1S2S3,那么A。

19、勾股定理知识点 1 勾股定理的认识1在直角三角形中,若勾为 3,股为 4,则弦为( )A5 B6 C7 D82下列说法正确的是( )A若 a,b,c 是ABC 的三边,则 a2b2c2B若 a,b,c 是 RtABC 的三边,则 a2b2c2C若 a,b,c 是 RtABC 的三边,且A90,则 a2b2c2D若 a,b,c 是 RtABC 的三边,且C90,则 a2b2c23如图 121,由直角三角形的三边向外作正方形 A,B,C,若正方形 A,B 的面积分别为 5和11,则正方形 C的面积为( )图 121A4 B6 C16 D55知识点 2 利用勾股定理进行计算4如图 122,在 RtABC 中,C90,AC2(_)2(_)2.(_)AB20,BC16,AC _( 。

20、1.2.1 勾股定理教学目标:1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并应用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)教学过程:一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理已知:如图,在 ABC 中, ACB90, AB13cm, BC5cm, CD AB 于 D。

【1.2.1 勾股定理 同步教案湘教版八年级数学下册】相关PPT文档
2019-2020人教版八年级数学下册17.2勾股定理的逆定理同步课件(共32张)
【1.2.1 勾股定理 同步教案湘教版八年级数学下册】相关DOC文档
4.1.2 函数的表示法 同步教案(湘教版八年级数学下册)
2.3.2 中心对称图形 同步教案(湘教版八年级数学下册)
3.3.2 平移的坐标表示 同步教案(湘教版八年级数学下册)
2.7 正方形 同步教案(湘教版八年级数学下册)
2.5.2 矩形的判定 同步教案(湘教版八年级数学下册)
2.5.1 矩形的性质 同步教案(湘教版八年级数学下册)
5.1 频数与频率 同步教案(湘教版八年级数学下册)
4.1.1 变量与函数 同步教案(湘教版八年级数学下册)
2.6.2 菱形的判定 同步教案(湘教版八年级数学下册)
人教版八年级数学下册《第十七章勾股定理》同步提升练习(含答案)
沪科版八年级数学下册《勾股定理》同步检测试卷(1)含答案
沪科版八年级数学下册《勾股定理》同步检测试卷(2)含答案
5.2 频数直方图 同步教案(湘教版八年级数学下册)
人教版八年级数学下册《17.2勾股定理的逆定理》同步练习(含答案)
人教版八年级数学下册《17.1勾股定理》同步练习(含答案)
湘教版八年级数学下册《1.2.2勾股定理的实际应用》同步练习(含答案)
湘教版八年级数学下册《1.2.3勾股定理的逆定理》同步练习(含答案)
湘教版八年级数学下册《1.2.1勾股定理》同步练习(含答案)
1.2.1 勾股定理 同步教案(湘教版八年级数学下册)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开