第2课时点到直线的距离公式 一、选择题 1.点(1,1)到直线y1的距离是() A. B. C.3 D.2 考点点到直线的距离 题点求点到直线的距离 答案D 解析d2,故选D. 2.原点到直线x2y50的距离为() A.1 B. C.2 D. 答案D 解析d. 3.已知直线l1:xy10,l2:xy
1.2.2 第1课时 平行直线 课时作业含答案Tag内容描述:
1、第2课时点到直线的距离公式一、选择题1.点(1,1)到直线y1的距离是()A. B.C.3 D.2考点点到直线的距离题点求点到直线的距离答案D解析d2,故选D.2.原点到直线x2y50的距离为()A.1 B. C.2 D.答案D解析d.3.已知直线l1:xy10,l2:xy10,则l1与l2之间的距离为()A.1 B. C. D.2答案B解析d.4.已知直线3xmy30与6x4y10互相平行,则它们之间的距离是()A.4 B. C. D.答案D解析3xmy30与6x4y10平行,m2,化6x4y10为3x2y0,d.5.已知点M(1,4)到直线l:mxy10的距离为3,则实数m等于()A.0 B. C.3 D.0或答案D解析点M到直线的距离d3,m0或.6.两平行直线分别经过点。
2、第2课时平面与平面平行基础过关1a,b,则a与b位置关系是()A平行 B异面C相交 D平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交2下列说法中正确的是()A如果两个平面,只有一条公共直线a,就说平面,相交,并记作aB两平面,有一个公共点A,就说,相交于过A点的任意一条直线C两平面,有一个公共点A,就说,相交于A点,并记作AD两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段3平面内有不共线的三点到平面的距离。
3、72.4直线的斜率第1课时倾斜角与斜率基础过关1下列说法中,正确的是()A直线的倾斜角为,则此直线的斜率为tan B直线的斜率为tan ,则此直线的倾斜角为C若直线的倾斜角为,则sin 0D任意直线都有倾斜角,且90时,斜率为tan 答案D解析对于A,当90时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan ,但只有0180时,才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,0,sin 0,故C不正确,故选D.2若A,B两点的横坐标相等,则直线AB的倾斜角和斜率分别是()A45,1 B135,1C90,不存在 D180,不存在答案C解析由于A,B两点的横。
4、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 1直线 3x4y120 与圆x12y129 的位置关系是。
5、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系一、选择题1.直线3x4y250与圆x2y29的位置关系为()A.相切 B.相交C.相离 D.相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2.若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A.515C.m13 D.42,m15.故选B.3.已知圆x2y29的弦过点P(1,2),当弦长最短时,该弦所在直线的方程为()A.y20 B.x2y50C.2xy0 D.x10答案B解析当弦。
6、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。
7、第3课时平面与平面平行学习目标1.掌握平面与平面的位置关系,会判断平面与平面的位置关系.2.学会用图形语言、符号语言表示平面间的位置关系.3.掌握空间中面面平行的判定定理及性质定理,并能应用这两个定理解决问题知识点一平面与平面平行的判定平面平行的判定定理及推论判定定理推论文字语言如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行符号语言l,m,l,m,lmAac,bd,abA,a,b,c,d图形语言知识点二平面与平面平行的性质平面。
8、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。
9、2.1.3两条直线的平行与垂直第1课时两条直线的平行学习目标1.理解并掌握两条直线平行的条件.2.能根据已知条件判断两直线平行.3.会利用两直线平行求参数及直线方程.知识点两条直线平行的判定类型斜率存在斜率不存在前提条件12901290对应关系l1l2k1k2且b1b2l1l2两直线斜率都不存在图示一、两条直线平行的判定例1下列直线l1与直线l2平行的有_.(填序号)l1经过点A(1,1),B(2,3),l2经过点C(1,0),D(2,2);l1的斜率为2,l2经过点A(1,1),B(2,2);l1的倾斜角为60,l2经过点M(1,),N(2,2);l1经过点E(3,2),F(3,10),l2经过点P(5,2),Q(5,5).。
10、第1课时 平行直线,第一章 1.2.2 空间中的平行关系,学习目标 1.掌握空间中两条直线的位置关系,理解空间平行性的传递性. 2.理解并掌握基本性质4及等角公理.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 基本性质4,1.文字表述:平行于同一条直线的两条直线互相 .这一性质叫做_.2.符号表达: .,平行,平行线的传递性,空间,ac,知识点二 等角定理,思考 观察图,在长方体ABCDABCD中,ADC与ADC,ADC与DAB的两边分别对应平行,这两组角的大小关系如何?,答案 从图中可以看出,ADCADC,ADCDAB180.,梳理 等角定理 如果一个角的两边与另一。
11、62.2平行关系第1课时直线与平面平行学习目标 1理解直线与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理、性质定理,并知道其地位和作用3能运用直线与平面平行的判定定理、性质定理证明一些空间线面关系的简单问题预习导引1直线与平面平行的定义ll2线面平行的判定定理、性质定理定理表示线面平行的判定定理线面平行的性质定理文字叙述平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行符号。
12、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。
13、第2课时平面与平面平行基础过关1.a,b,则a与b的位置关系是()A.平行B.异面C.相交D.平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.下列说法中正确的是()A.如果两个平面、只有一条公共直线a,就说平面、相交,并记作aB.两平面、有一个公共点A,就说、相交于过A点的任意一条直线C.两平面、有一个公共点A,就说、相交于A点,并记作AD.两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段.3.平面内有不共线的三点。
14、1.2.2空间两条直线的位置关系第1课时平行直线学习目标1.了解两条直线的三种位置关系.2.理解公理4和等角定理,并会用公理4证明线线平行.知识点一空间两条直线的位置关系位置关系共面情况公共点个数相交直线在同一平面内有且只有一个平行直线在同一平面内没有异面直线不同在任何一个平面内没有知识点二平行公理(公理4)文字语言平行于同一条直线的两条直线互相平行图形语言符号语言ab,bcac作用证明两条直线平行说明公理4表述的性质通常叫做空间平行线的传递性知识点三等角定理文字语言如果一个角的两边和另一个角的两边分别平行且方向相同,。
15、第3课时平面与平面平行一、选择题1下列四个说法中正确的是()A平面内有无数个点到平面的距离相等,则Ba,b,且ab(,分别表示平面,a,b表示直线),则C平面内一个三角形三边分别平行于平面内的一个三角形的三条边,则D平面内的一个平行四边形的两边与平面内的一个平行四边形的两边对应平行,则考点平面与平面平行的判定题点平面与平面平行的判定答案C解析由面面平行的判定定理知C正确2.如图,若经过D1B的平面分别交AA1和CC1于点E,F,则四边形D1EBF的形状是()A矩形B菱形C平行四边形D正方形答案C解析因为平面和左右两个侧面分别交于ED1,BF,。
16、第2课时直线与平面平行学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题知识点一直线与平面的位置关系直线与平面的位置关系定义图形语言符号语言直线在平面内有无数个公共点a直线与平面相交有且只有一个公共点aA直线与平面平行没有公共点a知识点二直线与平面平行的判定直线与平面平行的判定定理文字语言符号表示图形表示如果不在一个平面内一条直线和平面内的一条直线平行,那么这。
17、62.2平行关系第1课时直线与平面平行基础过关1直线l是平面外的一条直线,下列条件中可推出l的是()Al与内的一条直线不相交Bl与内的两条直线不相交Cl与内的无数条直线不相交Dl与内的任意一条直线不相交答案D解析由线面平行的定义可知D正确2下列命题中正确的个数是()ab,ba;a,bab;ab,ab;a,bab.A0 B1 C2 D3答案A解析中还可能有a,中a,b还可能异面,中还可能b,中还可能a和b相交、异面3有以下三个命题:一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;过直线外一点,有且只有一个平面和已知直线平行;如果直线l平面,那。
18、12.2空间中的平行关系第1课时平行直线学习目标1.掌握空间中两条直线的位置关系,理解空间平行性的传递性.2.理解并掌握基本性质4及等角公理知识点一基本性质41文字表述:平行于同一条直线的两条直线互相平行这一性质叫做空间平行线的传递性2符号表达:ac.知识点二等角定理如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等知识点三空间四边形顺次连接不共面的四点A,B,C,D所构成的图形,叫做空间四边形这四个点中的各个点叫做空间四边形的顶点;所连接的相邻顶点间的线段叫做空间四边形的边;连接不相邻的。
19、1.2.2空间中的平行关系第1课时平行直线、直线与平面平行基础过关1.能保证直线a与平面平行的条件是()A.a,b,abB.b,abC.b,c,acD.b,Aa,Ba,Cb,Db,且ACBD答案A解析由直线与平面平行的判定定理知A正确.2.下列命题中正确的是()A.若直线l上有无数个点不在平面内,则lB.若直线l与平面平行,则l与平面内的任意一条直线都平行C.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行D.若直线l与平面平行,则l与平面没有公共点答案D解析A项中,若lA时,除A点所有的点均不在内;B项中,l时,中有无数条直线与l异面;C项中,另。
20、第2课时直线与平面平行一、选择题1若直线a,b是异面直线,a,则b与平面的位置关系是()A平行 B相交Cb D平行或相交答案D解析a,b异面,且a,b,b与平行或相交2.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH平面SCD,则()AGHSABGHSDCGHSCD以上均有可能答案B解析因为GH平面SCD,GH平面SBD,平面SBD平面SCDSD,所以GHSD,显然GH与SA,SC均不平行,故选B.3.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:OMPD;OM平面PCD;OM平面PDA;OM平面PBA;OM平面PBC.其中正确的个数为()A1 B2 C3 D4答案C解。