欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.2.3 从图象看函数的性质 学案含答案

4.3 三角函数的图象与性质三角函数的图象与性质 最新考纲 考情考向分析 1.能画出 ysin x,ycos x,ytan x 的图象, 了解三角函数的周期性 2.理解正弦函数、 余弦函数在0,2上的性质 (如单调性、最大值和最小值,图象与 x 轴的 交点等),理解正切函数在区间 2, 2 内的

1.2.3 从图象看函数的性质 学案含答案Tag内容描述:

1、 4.3 三角函数的图象与性质三角函数的图象与性质 最新考纲 考情考向分析 1.能画出 ysin x,ycos x,ytan x 的图象, 了解三角函数的周期性 2.理解正弦函数、 余弦函数在0,2上的性质 (如单调性、最大值和最小值,图象与 x 轴的 交点等),理解正切函数在区间 2, 2 内的 单调性. 以考查三角函数的图象和性质为主,题目涉 及三角函数的图象及应用、图象的对称性、 单调性、周期性、最值、零点考查三角函 数性质时,常与三角恒等变换结合,加强数 形结合思想、 函数与方程思想的应用意识 题 型既有选择题和填空题,又有解答题,中档 难度. 1用。

2、1.2.7二次函数的图象和性质增减性和最值学习目标1.了解二次函数的定义.2.掌握二次函数的图象及增减性和最值知识链接1函数yx22x3的对称轴为x1,该函数的递增区间为(1,),递减区间为(,1)2函数yx2的最小值为0.预习导引二次函数f(x)ax2bxc(a0,xR),当a0(a0)时,在区间(,上递减(递增),在,)上递增(递减),图象曲线开口向上(下),在x处取到最小(大)值f(),这里b24ac.点(,)叫作二次函数图象的顶点.题型一求二次函数的解析式例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数解析式解方法一利用二次函数一般式设f(。

3、1.2.8二次函数的图象和性质对称性学习目标1.能说出奇函数和偶函数的定义.2.会判断具体函数的奇偶性.3.会分析二次函数图象的对称性.4.能求一个二次函数在闭区间上的最值知识链接函数yx的图象关于原点对称,yx2的图象关于y轴对称预习导引1函数的奇偶性(1)如果对一切使F(x)有定义的x,F(x)也有定义,并且F(x)F(x)成立,则称F(x)为偶函数;(2)如果对一切使F(x)有定义的x,F(x)也有定义,并且F(x)F(x)成立,则称F(x)为奇函数2二次函数图象的对称性(1)二次函数f(x)ax2bxc(a0)的图象的对称轴是直线x;(2)如果函数f(x)对任意的h都有f(sh)f(sh),那。

4、23幂函数23.1幂函数的概念23.2幂函数的图象和性质学习目标1.了解幂函数的概念,会求幂函数的解析式.2.结合幂函数yx,yx2,yx3,y,y的图象,掌握它们的性质.3.能利用幂函数的单调性比较指数幂的大小知识链接函数yx,yx2,y(x0)的图象和性质函数图象定义域值域单调性奇偶性yxRR递增奇yx2R0,)在(,0)上递减偶在0,)上递增yx|x0y|y0在(,0)上递减奇在(0,)上递减预习导引1幂函数的概念一般来说,当x为自变量而为非0实数时,函数yx叫作(次的)幂函数2幂函数的图象与性质幂函数yxyx2yx3yyx1图象定义域RRR0,)(,0) (0,)值域R0,)R0,)y|yR,且。

5、1.3.2余弦函数、正切函数的图象与性质(二)学习目标1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题.知识点一正切函数的图象(1)正切函数的图象称作“正切曲线”,如图所示.(2)正切函数的图象特征正切曲线是由通过点(kZ)且与y轴相互平行的直线隔开的无穷多支曲线所组成的.知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域域R周期奇偶性奇函数单调性在开区间(kZ)内都是增函数1.函数ytan x在其定义域上是增函数.()提示ytan x在开区间(kZ)上是增函数,但在其定义域上。

6、1.3.2余弦函数、正切函数的图象与性质(一)学习目标1.会用“五点法”作出余弦函数的简图.2.理解余弦函数的性质,会求余弦函数的周期、单调区间及最值.3.理解正弦曲线与余弦曲线的联系.知识点一余弦函数的图象在精确度要求不高时,要画出ycos x,x0,2的图象,可以通过描出(0,1),(,1),(2,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数ycos x,x0,2的图象.知识点二余弦函数的性质正弦函数、余弦函数的图象、性质对比函数ysin xycos x图象定义域RR值域1,11,1奇偶性奇函数偶函数周期性最小正周期:2最小正周期:2单调性在(。

7、33三角函数的图象与性质33.1正弦函数、余弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系知识链接1在如图所示的单位圆中,角的正弦线、余弦线分别是什么?答sinMP;cosOM2设实数x对应的角的正弦值为y,则对应关系ysinx就是一个函数,称为正弦函数;同样ycosx也是一个函数,称为余弦函数,这两个函数的定义域是什么?答正弦函数和余弦函数的定义域都是R.3作函数图象最基本的方。

8、3.3.1正弦函数、余弦函数的图象与性质(二)学习目标1.掌握ysinx与ycosx的定义域,值域,最值、单调性、奇偶性等性质,并能解决相关问题.2.掌握ysinx,ycosx的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)及yAcos(x)的单调区间知识链接1观察正弦曲线和余弦曲线的对称性,你有什么发现?答正弦函数ysinx的图象关于原点对称,余弦函数ycosx的图象关于y轴对称2上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证?答正弦函数是R上的奇函数,余弦函数是R上的偶函数根据诱导公式得,sin(x)sinx,cos(x)cosx均对一切xR。

9、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线的步骤和方法,能用“五点法”作出简单的正弦曲线.知识点一几何法作正弦曲线(1)正弦函数ysin x,xR的图象叫做正弦曲线.(2)几何法作正弦函数ysin x,x0,2的操作流程.作直角坐标系,并以直角坐标系x轴上任一点为圆心(一般取y轴左侧)画单位圆,如图所示.从单位圆与x轴的交点起,把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0,2的角的正弦线.找横坐。

10、1.3.1正弦函数的图象与性质(三)学习目标1.掌握ysin x的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握ysin x的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)的单调区间.知识点一正弦函数的定义域、值域观察下图中的正弦曲线.正弦曲线:可得如下性质:由正弦曲线很容易看出正弦函数的定义域是实数集R,值域是1,1.对于正弦函数ysin x,xR有:当且仅当x2k,kZ时,取得最大值1;当且仅当x2k,kZ时,取得最小值1.知识点二正弦函数的单调性正弦函数ysin x的图象与性质解析式ysin x图象值域1,1单调性在,kZ上递增,在,kZ上递减最。

11、1.3.1正弦函数的图象与性质(二)学习目标1.了解周期函数、周期、最小正周期的定义.2.会求函数yAsin(x)的周期.3.掌握函数ysin x的奇偶性,会判断简单三角函数的奇偶性.知识点一函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期.知识点二正弦函数的周期性由sin(x2k)sin x(kZ)知,ysin x是周期函数,2k(kZ且k0)是它的周期。

12、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.4.掌握正弦曲线、余弦曲线的性质知识点一正弦函数图象1正弦函数的图象叫做正弦曲线如图:2正弦曲线的作法(1)几何法借助三角函数线(2)描点法五点法用“五点法”画正弦曲线在0,2上的图象时所取的五个关键点为(0,0),(,0),(2,0)知识点二余弦函数图象1余弦函数的图象叫做余弦曲线如图。

13、2.2.3对数函数的图象和性质第1课时反函数及对数函数的图象和性质学习目标1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质知识链接1作函数图象的步骤为列表、描点、连线另外也可以采取图象变换法2指数函数yax(a0且a1)的图象与性质.a10a1图象定义域R值域(0,)性质过定点过点(0,1),即x0时,y1函数值的变化当x0时,y1;当x0时,0y1当x0时,0y1;当x0时,y1单调性是R上的增函数是R上的减函数预习导引1对数函数的概念把函数ylogax(x0,a0,a1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义。

14、第2课时正切函数的图象与性质学习目标1.会求正切函数ytan(x)的周期.2.掌握正切函数ytan x的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法知识点一正切函数的图象1正切函数的图象叫正切曲线,图象如下:2正切函数的图象特征正切曲线是被相互平行的直线xk,kZ所隔开的无穷多支曲线组成的知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域值域R周期奇偶性奇单调性在开区间(kZ)上都是单调增函数1函数ytan x在其定义域上是增函数()提示ytan x在开区间(kZ)上是增函数,但在其定。

15、21.2指数函数的图象和性质第1课时指数函数的图象和性质学习目标1.理解指数函数的概念和意义.2.能借助计算器或计算机画出指数函数的图象.3.初步掌握指数函数的有关性质知识链接1arasars;(ar)sars;(ab)rarbr.其中a0,b0,r,sR.2在初中,我们知道有些细胞是这样分裂的:由1个分裂成2个,2个分裂成4个,.1个这样的细胞分裂x次后,第x次得到的细胞个数y与x之间构成的函数关系为y2x,x0,1,2,预习导引1函数yax叫作指数函数,其中a是不等于1的正实数,函数的定义域是R.2从图象可以“读”出的指数函数yax(a1)的性质有:(1)图象总在x轴上方,且。

16、3.3.2正切函数的图象与性质学习目标1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题知识链接1正切函数的定义域是什么?用区间如何表示?答,x (kZ)2如何作正切函数的图象?答类似于正弦、余弦函数的“五点法”作图,正切曲线的简图可用“三点两线法”,这里的三点分别为(k,0),其中kZ,两线分别为直线xk(kZ),xk(kZ)3根据相关诱导公式,你能判断正切函数具有奇偶性吗?答从正切函数的图象来看,正切曲线关于原点对称;从诱导公式来看,tan(x)tanx故正切函数是奇函数预习导引函数ytanx的性质。

17、14.3 正切函数的性质与图象正切函数的性质与图象 学习目标 1.会求正切函数 ytan(x)的周期.2.掌握正切函数 ytan x 的奇偶性, 并会判 断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法 知识点 正切函数的性质 函数 ytan x xR且xk 2,kZ 的图象与性质见下表: 解析式 ytan x 图象 定义域 x xR且xk 2,kZ 值域 R 。

18、12.4从解析式看函数的性质学习目标1.理解函数单调性的定义,了解有界函数、无界函数的定义.2.运用函数单调性的定义判断函数的单调性.3.通过对一些熟悉函数图象的观察、分析,体会函数最大值、最小值与单调性之间的关系及其几何意义.4.会利用函数的单调性求函数的最值知识链接以下说法中:函数y2x在R上为增函数;函数y的单调递增区间为(,0)(0,);函数yx22x3的单调递增区间为(1,)正确的有_答案预习导引1函数的上界和下界(1)上界和下界:设D是函数f(x)的定义域,如果有实数B使得f(x)B对一切xD成立,称B是函数f的一个上界,如果有实数A使得。

19、1.2.3从图象看函数的性质学习目标1.能从函数的图象上看出函数的性质,如最值、有界性、单调性、奇偶性等.2.掌握正比例函数、一次函数、反比例函数的性质知识链接1正比例函数ykx(k0)的图象是一条直线,它经过原点2一次函数ykxb(k0),当k0时,随着x的增大,y增大3反比例函数y的图象为:预习导引1奇函数和偶函数(1)奇函数:如果函数的图象关于原点中心对称也就是说,绕原点旋转180后和自己重合这样的函数被说成是奇函数(2)偶函数:如果一个函数的图象是以y轴为对称轴的轴对称图形,这个函数被说成是偶函数2单调函数(1)单调递增函数:函数值y。

【1.2.3 从图象看函数的性质 学案含答案】相关DOC文档
高考数学一轮复习学案:三角函数的图象与性质(含答案)
1.2.7 二次函数的图象和性质——增减性和最值 学案(含答案)
1.2.8 二次函数的图象和性质——对称性 学案(含答案)
2.3.1 幂函数的概念-2.3.2 幂函数的图象和性质 学案(含答案)
1.3.2 余弦函数、正切函数的图象与性质(二)学案(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)学案(含答案)
3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)
3.3.1 正弦函数、余弦函数的图象与性质(二) 学案(含答案)
1.3.1 正弦函数的图象与性质(一)学案(含答案)
1.3.1 正弦函数的图象与性质(三) 学案(含答案)
1.3.1 正弦函数的图象与性质(二)学案(含答案)
3.3.2 正切函数的图象与性质 学案(含答案)
1.4.3 正切函数的性质与图象 学案(含答案)
1.2.4 从解析式看函数的性质 学案(含答案)
1.2.3 从图象看函数的性质 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开