欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.2.3 勾股定理的逆定理 同步教案湘教版八年级数学下册

平行四边形的判定定理夯实基础知识点 1 对角线互相平分的四边形是平行四边形1下列说法正确的是( )A对角线相等的四边形是平行四边形B对角线互相平分的四边形是平行四边形C对角线互相垂直的四边形是平行四边形D对角线互相垂直且相等的四边形是平行四边形2如图 2241 所示,AOCO,BD16 cm,则当

1.2.3 勾股定理的逆定理 同步教案湘教版八年级数学下册Tag内容描述:

1、平行四边形的判定定理夯实基础知识点 1 对角线互相平分的四边形是平行四边形1下列说法正确的是( )A对角线相等的四边形是平行四边形B对角线互相平分的四边形是平行四边形C对角线互相垂直的四边形是平行四边形D对角线互相垂直且相等的四边形是平行四边形2如图 2241 所示,AOCO,BD16 cm,则当 OB_cm 时,四边形 ABCD 是平行四边形图 22413若将两根木条 AC,BD 的中点重叠,并用钉子固定,则四边形 ABCD 为平行四边形,理由是_4如图 2242,在四边形 ABCD 中,ADBC,对角线 AC,BD 交于点 O,且 OAOC.求证:四边形 ABCD 是平行四边形图 22425。

2、平行四边形的判定定理夯实基础知识点 1 一组对边平行且相等的四边形是平行四边形1在四边形 ABCD中,ABCD,ABCD,则四边形 ABCD为_四边形,理由是_2下列不能判定四边形 ABCD是平行四边形的条件是( )AABCD,ADBC BCDAB,CDABCBCAD,ABCD DADBC,ADBC3如图 2230,在四边形 ABCD中,ADBC,ACBCAD.求证:ABCD.图 22304将两块全等的含 30角的三角尺按图 2231 所示的方式摆放在一起求证:四边形 ABCD是平行四边形图 22315如图 2232,在ABCD 中,点 E,F 分别在边 BC,AD 上,且 DFBE.求证:四边形 AECF是平行四边形图 2232知识点 2 两组对边分别。

3、1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1 个单位的小正方形组成的网格中,点 A,B 都是格点,则线段 AB 的长度为( )图 K31A5 B6 C7 D253如图 K32,在ABC 中,C90,AB 的垂直平分线交 AB 于点 D,交 BC 于点E,连接 AE.若 CE5,AC12,则 BE 的长是( )图 K32A5 B10 C12 D134如图 K33,长方形 OABC 的边 OA 的长为 3,边 AB 的长为 2,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )。

4、第1章 直角三角形,1.2 直角三角形的性质和判定(),第2课时 勾股定理的应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 勾股定理的应用,知识目标,1通过仿照“动脑筋”,建立直角三角形模型解决实际问题 2通过观察图形,结合转化思想,构造直角三角形应用勾股定理解决问题,目标突破,目标一 利用勾股定理解决实际问题,例1 教材“动脑筋”针对训练 如图124,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行多少米?,图124,第2课时 勾股定理的应用,解析根据“两点之间线段。

5、第1章 直角三角形,1.2 直角三角形的性质和判定(),第1课时 勾股定理,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 勾股定理,知识目标,1通过在方格纸中经历观察、计算、归纳发现勾股定理,会用拼图的方式验证勾股定理 2在理解勾股定理的基础上,会用勾股定理求图形的边长或面积,目标突破,目标一 会验证勾股定理,例1 教材补充例题 如图121是用硬纸板做成的两直角边长分别是a,b,斜边长为c的四个全等的直角三角形和一个边长为c的正方形,请你将它们拼成 一个能证明勾股定理的图形 (1)画出拼成的这个图形的示意图; (2)证明勾股定理,。

6、平行四边形的判定定理教学目标:1掌握平行四边形的判定定理 3;(重点)2综合运用平行四边形的性质与判定解决问题(难点)教学过程:一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题是否存在其他的判定方法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形已知,如图, AB.CD 相交于点 O, AC DB, AO BO, E.F 分别是 OC.OD 的中点求证:(1) AOC BOD;(2)四边形 AFBE 是平行四边形解析:(1)利用已知条件和全等三角形的判定方法即可证明 AOC BOD;(2)此题已知 AO BO。

7、平行四边形的判定定理教学目标:1掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2掌握“对边分别相等的四边形是平行四边形”的判定方法;(重点)3平行四边形判定定理的综合应用(难点)教学过程:一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1两组对边分别平行且相等;2两组对角分别相等;3两条对角线互相平分那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定那么是否存在其他的判定方法呢?。

8、1专题训练(一) 直角三角形与勾股定理的应用 类型之一 共边直角三角形的问题1如图 1ZT1,一架梯子的长度为 2.5 米,斜靠在墙上,梯子底部离墙底端 0.7米(1)这个梯子顶端离地面_米;(2)如果梯子的顶端下滑了 0.4 米,那么梯子的底部在水平方向上滑动了几米?图 1ZT12如图 1ZT2,在离水面高度为 5 米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为 13 米,此人以每秒 0.5 米的速度收绳,10 秒后船移动到点 D 的位置,则船向岸边移动了多少米?(假设绳子是直的,结果保留根号)图 1ZT22 类型之二 构造直角三角形解决问题3由于过度采伐森林和。

9、1课时作业(五)1.2 第 3 课时 勾股定理的逆定理 一、选择题1下列四组线段中,能组成直角三角形的是( )Aa1,b2,c2 Ba2,b3,c4Ca2,b4,c5 Da3,b4,c52若ABC 的三边 a,b,c 满足(ac)(a 2b 2c 2)0,则ABC 是( )A等腰三角形 B直角三角形 C等腰三角形或直角三角形 D等腰直角三角形3五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图 K51,其中正确的是 ( )图 K514如图 K52,在正方形网格中有一个ABC,若小方格的边长均为 1,则ABC 是 ( )图 K52A直角三角形B锐角三角形 C钝角三角形D以上答案都不正确52018长沙。

10、第1章 直角三角形,1.2 直角三角形的性质和判定(),第3课时 勾股定理的逆定理,目标突破,总结反思,第1章 直角三角形,知识目标,第3课时 勾股定理的逆定理,知识目标,1通过勾股定理的逆向思考、验证、归纳,掌握直角三角形的判定方法 2在弄清勾股定理及其逆定理的区别与联系的前提下,综合运用两个定理解决数学问题,目标突破,目标一 会用勾股定理的逆定理判定直角三角形,例1 教材例3 针对训练 已知ABC的三边长a,b,c满足下列条件,且A,B,C所对的边分别为a,b,c,试判断ABC的形状 (1)a25,b20,c15; (2)ap2q2,bp2q2,c2pq(pq0),第3课时 勾。

11、17.2勾股定理的逆定理,第一课时,第二课时,人教版 数学 八年级 下册,勾股定理的逆定理,第一课时,返回,按照这种做法真能得到一个直角三角形吗?,古埃及人曾用下面的方法得到直角:,用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.,1. 掌握勾股定理逆定理的概念并理解互逆命题、互逆定理的概念、关系及勾股数.,2. 能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.,素养目标,据说,古埃及人曾用如图所示的方法画直角.,勾股定理的逆定。

12、勾股定理在实际生活中的应用知识点 勾股定理的实际应用1如果梯子的底端与某高楼竖直墙的距离为 5 米,那么 13 米长的梯子可以达到该楼的高度是( )A12 米 B13 米 C14 米 D15 米2一根旗杆在离地面 4.5 米的地方折断,旗杆顶端落在离旗杆底部 6 米处,则旗杆折断前高为( )A10.5 米 B7.5 米 C12 米 D8 米3如图 1213,某工程队沿 AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B 取ABD120,BD210 m,D30,要正好能使 A,C,E成一条直线,那么 E,D 两点之间的距离等于( )图 1213A105 m B210 m C70 m D105 m3 3 3。

13、18.2 勾股定理的逆定理,第18章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理的逆定理,1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点) 2.能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.(难点),导入新课,问题1 勾股定理的内容是什么?,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,b,c,a,问题2 求以线段a、b为直角边的直角三角形的斜边c的长:, a3,b4; a2.5,b6; a4,b7.5.,c=5,c=6.5,c=8.5,复习引入,思考 以前我们已经学过了通过角。

14、勾股定理知识点 1 勾股定理的认识1在直角三角形中,若勾为 3,股为 4,则弦为( )A5 B6 C7 D82下列说法正确的是( )A若 a,b,c 是ABC 的三边,则 a2b2c2B若 a,b,c 是 RtABC 的三边,则 a2b2c2C若 a,b,c 是 RtABC 的三边,且A90,则 a2b2c2D若 a,b,c 是 RtABC 的三边,且C90,则 a2b2c23如图 121,由直角三角形的三边向外作正方形 A,B,C,若正方形 A,B 的面积分别为 5和11,则正方形 C的面积为( )图 121A4 B6 C16 D55知识点 2 利用勾股定理进行计算4如图 122,在 RtABC 中,C90,AC2(_)2(_)2.(_)AB20,BC16,AC _( 。

15、,第十七章 勾股定理,17.2 勾股定理的逆定理,第十七章 勾股定理,17.2 勾股定理的逆定理,考场对接,考场对接,题型一 识别二次根式,D,D,A,题型二 利用勾股定理的逆定理证明两条直线垂直或求夹角的大小,题型三 利用勾股定理及其逆定理求线段的长,题型六 运用勾股定理解决图形折叠问题,题型四 利用勾股定理及其逆定理求图形的面积,题型五 利用勾股定理的逆定理解决实际问题,题型六 用互逆定理的定义判断一个定理是否有逆定理,谢 谢 观 看!,。

16、1.2.1 勾股定理教学目标:1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并应用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)教学过程:一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理已知:如图,在 ABC 中, ACB90, AB13cm, BC5cm, CD AB 于 D。

17、第 1 页,共 10 页17.2 勾股定理的逆定理同步练习一、选择题1. 用 a、 b、 c 作三角形的三边,其中不能构成的直角三角形的是( )A. B. a: b: :2:b2=(a+c)(a-c) c=1 3C. , , D. , ,a=32 b=42 c=52 a=6 b=8 c=102. 已知一个三角形的三边长分别为 , ,2,则这个三角形的面积为( )2 6A. B. C. D. 22 23 2 33. 在 ABC 中, A, B, C 的对边分别为 a, b, c,且( a+b)( a-b)= c2,则( )A. 为直角 B. 为直角 A CC. 为直角 D. 不是直角三角形 B4. 下列结论中,错误的有( ) 在 Rt ABC 中,已知两边长分别为 3 和 4,则第三边的。

18、勾股定理的逆定理知识点 1 勾股定理的逆定理1在ABC 中,AB6,AC8,BC10,则该三角形为( )A锐角三角形 B直角三角形C钝角三角形 D等腰直角三角形2以下列各组线段为边,能构成直角三角形的是( )A1 cm,2 cm,3 cm B. cm, cm, cm2 6 3C1 cm,2 cm, cm D2 cm,3 cm,4 cm33如图 1226,正方形网格中的ABC 的形状是( )图 1226A直角三角形 B锐角三角形C钝角三角形 D以上选项都不对4在ABC 中,a ,b ,c2 ,则这个三角形中最大的内角度数是2 6 2_5如图 1227,以ABC 的三边为边分别向外作正方形,它们的面积分别是S1,S2,S3,如果 S1S2S3,那么A。

【1.2.3 勾股定理的逆定理 同步教案湘教版八年级数学下册】相关PPT文档
【1.2.3 勾股定理的逆定理 同步教案湘教版八年级数学下册】相关DOC文档
2.2.2平行四边形的判定定理(第2课时)同步教案(湘教版八年级数学下册)
2.2.2平行四边形的判定定理(第1课时)同步教案(湘教版八年级数学下册)
湘教版八年级数学下册《1.2.2勾股定理的实际应用》同步练习(含答案)
湘教版八年级数学下册《1.2.1勾股定理》同步练习(含答案)
1.2.1 勾股定理 同步教案(湘教版八年级数学下册)
人教版八年级数学下册《17.2勾股定理的逆定理》同步练习(含答案)
湘教版八年级数学下册《1.2.3勾股定理的逆定理》同步练习(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开