欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.2第1课时空间向量基本定理 同步练习含答案

第第 2 2 课时课时 空间向量基本定理的初步应用空间向量基本定理的初步应用 学习目标 1.会用基底法表示空间向量. 2.初步体会利用空间向量基本定理求解立体几何问 题的思想 知识点一 证明平行、共线、共面问题 (1) 对于空间任意两个向量 a,b(b0),ab 的充要条件是存在实数 ,使 ab.

1.2第1课时空间向量基本定理 同步练习含答案Tag内容描述:

1、第第 2 2 课时课时 空间向量基本定理的初步应用空间向量基本定理的初步应用 学习目标 1.会用基底法表示空间向量. 2.初步体会利用空间向量基本定理求解立体几何问 题的思想 知识点一 证明平行、共线、共面问题 (1) 对于空间任意两个向量 a,b(b0),ab 的充要条件是存在实数 ,使 ab. (2) 如果两个向量 a,b 不共线,那么向量 p 与向量 a,b 共面的充要条件是存在唯一的有序。

2、1.41.4 空间向量的应用空间向量的应用 1 14.14.1 用空间向量研究直线用空间向量研究直线、平面的位置关系平面的位置关系 第第 1 1 课时课时 空间中点空间中点、直线和平面的向量表示直线和平面的向量表示 1已知向量 a(2, 1,3)和 b(4,2x2,6x)都是直线 l 的方向向量,则 x 的值是( ) A1 B1 或1 C3 D1 答案 A 解析 由题意得 ab,所以 。

3、1.21.2 空间向量基本定理空间向量基本定理 第第 1 1 课时课时 空间向量基本定理空间向量基本定理 学习目标 1.掌握空间向量基本定理. 2.会用空间向量基本定理对向量进行分解 . 知识点一 空间向量基本定理 如果三个向量 a,b,c 不共面,那么对任意一个空间向量 p,存在唯一的有序实数组(x,y, z),使得 pxaybzc. 我们把a,b,c叫做空间的一个基底,a,b,c 都叫做基向。

4、1 11.11.1 空间向量及其线性运算空间向量及其线性运算 第第 1 1 课时课时 空间向量及其线性运算空间向量及其线性运算 1(多选)下列说法中,正确的是( ) A模为 0 是一个向量方向不确定的充要条件 B若向量AB ,CD 满足|AB |CD |,AB 与CD 同向,则AB CD C若两个非零向量AB ,CD 满足AB CD 0,则AB ,CD 互为相反向量 D.AB CD 的充要条。

5、第第 2 2 课时课时 空间向量基本定理的初步应用空间向量基本定理的初步应用 1 已知 O, A, B 是平面上的三个点, 直线 AB 上有一点 C, 满足 2AC CB0, 则OC 等于( ) A2OA OB BOA 2OB C.2 3OA 1 3OB D1 3OA 2 3OB 答案 A 解析 由已知得 2(OC OA )(OB OC )0, OC 2OA OB . 2如图,已知空间四。

6、1.21.2 空间向量基本定理空间向量基本定理 第第 1 1 课时课时 空间向量基本定理空间向量基本定理 1设 p:a,b,c 是三个非零向量;q:a,b,c为空间的一个基底,则 p 是 q 的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 答案 B 解析 当非零向量 a,b,c 不共面时,a,b,c可以当基底,否则不能当基底, 当a,b,c为基底时,一定有 a,。

【1.2第1课时空间向量基本定理 同步练习含答案】相关DOC文档
1.4.1(第1课时)空间中点、直线和平面的向量表示 同步练习(含答案)
1.1.1 第1课时 空间向量及其线性运算 同步练习(含答案)
1.2(第2课时)空间向量基本定理的初步应用 同步练习(含答案)
1.2(第1课时)空间向量基本定理 同步练习(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开