第第 2 课时课时 两个计数原理的综合应用两个计数原理的综合应用 学习目标 1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两 个计数原理计数 知识点一 两个计数原理的区别与联系 分类加法计数原理 分步乘法计数原理 相同点 用来计算完成一件事的方法种类 不同点 分类完成,类类
1.2 排列第2课时排列的应用 学案苏教版高中数学选修2-3Tag内容描述:
1、第第 2 课时课时 两个计数原理的综合应用两个计数原理的综合应用 学习目标 1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两 个计数原理计数 知识点一 两个计数原理的区别与联系 分类加法计数原理 分步乘法计数原理 相同点 用来计算完成一件事的方法种类 不同点 分类完成,类类相加 分步完成,步步相乘 每类方案中的每一种方法 都能独立完成这件事 每步依次完成才算完成这件 事。
2、第2课时分类计数原理与分步计数原理的应用 学习目标巩固分类计数原理和分步计数原理,并能灵活应用这两个计数原理解决实际问题. 知识点一两个计数原理的区别与联系 分类计数原理 分步计数原理 相同点 用来计算完成一件事的方法种类 不同点 分类完成,类类相加 分步完成,步步相乘 每类方案中的相邻的试验田不能种同一种作物每一种方法都能独立完成这件事 每步依次完成才算完成这件事(每步中的一种方法不能独立完成。
3、第第 2 课时课时 组合的应用组合的应用 学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问 题 1组合的有关概念 从 n 个不同元素中,任意取出 m(mn)个元素并成一组,叫做从 n 个不同元素中任取 m 个元 素的一个组合 组合数,用符号 Cm n表示其公式为 Cm nA m n Am m nn1n2nm1 m! n! m!nm!(n,mN ,mn)特别地 。
4、第第 2 课时课时 组合的应用组合的应用 学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问 题 知识点 组合应用题的解法 1无限制条件的组合应用题的解法步骤为:一、判断;二、转化;三、求值;四、作答 2有限制条件的组合应用题的解法 常用解法有:直接法、间接法可将条件视为特殊元素或特殊位置,一般地按从不同位置选 取元素的顺序分步,或按从同一位置选取的元素个数的多。
5、第第 2 课时课时 组合的应用组合的应用 学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问 题 知识点 组合的特点 思考 组合的特征有哪些? 答案 组合取出的元素是无序的 梳理 (1)组合的特点是只取不排 组合要求 n 个元素是不同的,被取出的 m 个元素也是不同的,即从 n 个不同的元素中进行 m 次不放回地取出 (2)组合的特性 元素的无序性,即取出的 m。
6、2 排列排列 第第 1 课时课时 排列与排列数公式排列与排列数公式 学习目标 1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单 的实际问题 知识点一 排列的定义 思考 1 若 A,B,C 三名同学排成一行照相,有哪些站法?请列举出来 答案 ABC,BCA,CAB,ACB,CBA,BAC. 思考 2 ABC 与 ACB 是同一种站法吗? 答案 不是 梳理 排列的定义 从 。
7、第第 2 课时课时 排列的应用排列的应用 学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列, 能应用排列数公 式解决简单的实际问题 1排列数公式 Am nn(n1)(n2)(nm1)(n,mN,mn) n! nm!. Annn(n1)(n2)2 1n!(叫做 n 的阶乘)另外,我们规定 0!1. 2应用排列与排列数公式求解实际问题中的计数问题的基本步骤 类型一 无限制条件。
8、第第 2 课时课时 排列的应用排列的应用 学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数 公式解决简单的实际问题 知识点 排列及其应用 1排列数公式 Am nn(n1)(n2)(nm1)(n,mN,mn) n! nm!. Annn(n1)(n2)2 1n!(读作 n 的阶乘)另外,我们规定 0!1. 2应用排列与排列数公式求解实际问题中的计数问题的基本步骤 。
9、1.2 排排 列列 第第 1 课时课时 排列与排列数公式排列与排列数公式 学习目标 1.了解并掌握排列的概念.2.理解并掌握排列数公式及推导过程.3.能应用排列知 识解决简单的实际问题. 知识点一 排列的概念 从甲、乙、丙三名同学中选出 2 人参加一项活动,其中 1 名同学参加上午的活动,另 1 名同 学参加下午的活动. 思考 1 让你安排这项活动需要分几步? 答案 分两步.第 1 步确定上午的。
10、第第 2 课时课时 排列的应用排列的应用 学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公 式解决简单的实际问题 知识点 排列及其应用 1排列数公式 Am nn(n1)(n2)(nm1)(n,mN *,mn) n! nm!. Annn(n1)(n2)21n!(叫做 n 的阶乘)另外,我们规定 0!1. 2应用排列与排列数公式求解实际问题中的计数问题的基本步骤。