2.1 有理数的加法,?, 教学目标: 1、使学生理解有理数加法的意义。 2、会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加。 3、培养学生及时检验的良好习惯。 重点 有理数的加法法则。 难点 异号两数相加包括绝对值相减、确定和的符号,学生不易掌握,容易发生差错,是本节数学的难点。,如
1.3.1有理数的加法Tag内容描述:
1、2.1 有理数的加法,?, 教学目标: 1、使学生理解有理数加法的意义。 2、会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加。 3、培养学生及时检验的良好习惯。 重点 有理数的加法法则。 难点 异号两数相加包括绝对值相减、确定和的符号,学生不易掌握,容易发生差错,是本节数学的难点。,如果你是仓库管理员,将怎样记录每天仓库内进出货的情况和库存变化?,根据你的生活经验,填写表中的空格,然后思考以下问题: (1) 怎样用算式表示这两天共运进多少吨水泥?共运出多少吨水泥?,库存变化,(2) 怎样用算式表示这两天每天。
2、【人教版数学七年级【人教版数学七年级 ( (上上) )周周测】周周测】 第第 2 周测试卷周测试卷 ( (测试范围:测试范围:1. .2. .3 相反数相反数1. .3. .1 有理数的加法有理数的加法) ) 班级:班级:_ 姓名:姓名:_ 得分:得分:_ 一、选择题一、选择题( (每小题每小题 3 分,共分,共 30 分分) ) 1. 。
3、有理数加法(二),教学目标:1通过合作学习,体验探索数学规律的思想和方法 2理解加法的运算律 3掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程 4灵活运用有理数的加法解决实际问题。 教学重点:有理数加法运算中, 加法的交换律和结合律仍然成立。 教学难点:运用加法的交换律和结合律时,交换数的位置必须要带上符号;多个有理数相加若灵活运用运算律可以简化计算。,学科网,自学30-31页并完成以下问题 1有理数的加法运算有哪些运算律?你可以用字母表示出来吗? 2灵活运用加法的运算律可以简便运算,一般哪些数结合在一起可。
4、2.1 有理数的加法(一),教学目标1通过实例经历加法法则的产生过程2掌握有理数的加法法则3会利用加法法则求两个有理数的和,会在数 轴上表示两个有理数相加。 教学重点:有理数的加法运算法则 教学难点:有理数加法法则的发生过程比较复杂,异 号两数相加的法则不容易掌握,是学习的难点。,学科网,学情分析,有理数加法法则的发生过程比较复杂,异 号两数相加的法则不容易掌握,是学习的难点。,预习提要,预习26-28页,并回答下列问题 (1)可以用什么方法来计算仓库内进出货的累计数量和变化? (2)同号两数相加的法则是什么? (3)异号两。
5、高效提分 源于优学第04讲 有理数的加法温故知新(一)有理数(1)有理数的概念:整数与分数统称为有理数。整数的概念:正整数、零和负整数统称为整数,例如:1,2,3,0,-1,-2等分数的概念:正分数和负分数统称为分数。有限小数和无限循环小数也是分数,如,0.6,等(2)有理数的分类:通常把正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数(也叫自然数),负整数和零统称为非正整数。课堂导入动脑筋,思考左图中的问题。生活中还有这样类似这样具有相反意义的例子吗?请与同学进行讨论交流知识要点一有理数的加。
6、高效提分 源于优学第04讲 有理数的加法温故知新(一)有理数(1)有理数的概念:整数与分数统称为有理数。整数的概念:正整数、零和负整数统称为整数,例如:1,2,3,0,-1,-2等分数的概念:正分数和负分数统称为分数。有限小数和无限循环小数也是分数,如,0.6,等(2)有理数的分类:通常把正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数(也叫自然数),负整数和零统称为非正整数。课堂导入动脑筋,思考左图中的问题。生活中还有这样类似这样具有相反意义的例子吗?请与同学进行讨论交流知识要点一有理数的加。
7、,有理数的加法,教学课件,湘教版七年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,本赛季,凯旋足球队第一场比赛赢了个球,第二场比赛输了个球,该队这两场比赛的净胜球数是多少?,我们可以把赢1个球记为“+1”,输1个球记为“-1”,此时该队的净胜 球数为:(+1)+(-1)=?,如何计算除了两个正数之外其余的有理数之和呢?,02 新知探究,新课导入,想一想,在一条东西向的笔直马路上,任取一个点O.若把向东走1km记为1,则向西走1km便记为-1.小丽从点O出发,先向西走了2km,然后。
8、1.4 有理数的加法和减法1.4.1 有理数的加法第 1课时 有理数的加法1.下面的数中,与-5 的和为 0的是( )A.-5 B.5 C. D.-152.下列计算中正确的是( )A.(+6.2)+(-2.8)=3.4 B.(-6.2)+0=6.2 C.(+6.2)+(-2.8)=-9 D.(+6.2)+(-2.8)=93.若 m+n=0,则 m,n 的取值一定是( )A.都是 0 B.至少有一个等于 0 C.互为相反数 D.a 是正数,b 是负数4.计算:(1)(-5.8)+(-4.3); (2)(+7)+(-12);(3)(-8 )+0; (4)(-6.25)+6 .23 145.某企业今年第一季度盈余 11 000元,第二季度亏本 4 000元,该企业今年上半年盈余(或亏本)可用算式表示为( )A.(+11 000)+(+4 000) B。
9、 第一章第一章 有理数有理数 1.3.1 有理数的加法 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的 1计算3+1 的结果是 A2 B4 C4 D2 2计算(+1)+|1|,结果为 A2 B2 C1 D0 3温度由4 C 上升 7 C 后温度是 A3 C B3 C C11 C D11 C 4比2 大 3 的数是 A3 B5 C1 D2 5如果+ 1 2 =0,那么内应填的数是 。
10、第二章有理数及其运算4有理数的加法第1课时有理数的加法法则1. 计算:(1)(15)(10);(2)(1.05)(1.05);(3)(12)(18);(4)(25)(56)(39);(5).解:(1)(15)(10)(1510)25;(2)(1.05)(1.05)0;(3)(12)(18)(1812)6;(4)(25)(56)(39)5625(39)31(39)(3931)8;(5).2.甲地海拔是63米,乙地比甲地高24米,丙地比乙地高72米,求乙、丙两地海拔分别是多少米解:乙地海拔为6324(6324)39(米),丙地海拔为3972723933(米)3计算(3)(9)的结果是(A)A12 B6 C6 D124计算(3)4的结果是(C)A7 B1 C1 D75计算3(3)的结果是(。
11、,苏科数学七年级上册,2.5 有理数的加法与减法(4),苏科数学,先看一个例子: (8)(10)(6)(4), 这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习,苏科数学,议一议,(1)上题可以按照运算顺序,从左到右逐一加以计算;,(2)上题通常也可以用有理数减法法则,把它改写: (8)(10)(6)(4),苏科数学,有理数的加减混合运算,有理数的加减混合运算可以统一为加法运算,苏科数学,尝试解决,例5 计算: (1)258; (2)14251217.,苏科数学,尝试解决,例6 计算 (1)354; (2)2643241346,苏科数学,小结与思考,你还有什么。
12、2.1有理数的加法(2)1有理数a,b在数轴上的位置如图所示,则ab的值( )(第1题)A大于0 B小于0C等于0 D小于a2计算(9.5)(7.5)的结果是( )A2 B1C1 D33若三个有理数的和是正数,则这三个数( )A都是正数 B一定是一正两负C一定是零和正数 D至少有一个正数4设a是最小的正整数,b是最大的负整数,c是绝对值最小的整数,则abc的值为 ( )A2 B1C0 D15若|a|3,|b|2,且ab,则ab等于( )A5 B1C5或1 D5或16一天早晨的气温是9 ,中午上升了6 。
13、,苏科数学七年级上册,2.5 有理数的加法与减法(2),苏科数学,(1)(2)(8) ; (2)(15)(21) ; (3) 69 ; (4)(7)(7) ; (5)(41)(3) ;(6)(7)(4) ,算一算,苏科数学,(1)35 , 53 ; (3)(5) , (5)(3) ; 3(5) , (5)3 ,引入负数后,小学里学过的加法交换律和结合律还成立吗?,(2)(35)7 , 3(57) ; 3(5) 7 , 3(5)7 ; 3(5) (7) , 3(5)(7) ,(3)请再举一些例子,(4)通过上面的计算结果,你有什么发现?,苏科数学,有理数的加法运算律,交换律: ab b。
14、,苏科数学,2.5 有理数的加法与减法(1),初中数学七年级 上册 (苏科版),创设情境-问题,甲、乙两队进行足球比赛如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球 你能把上面比赛的过程及结果用有理数的算式表示出来吗? 如果把赢球记为“”,输球记为“”,可得算式:,填写表中净胜球数和相应的算式,通过思考,你能举出一些应用有理数加法的实际例子吗?,数学实验室,1把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“2”的位置上,请用数轴和算式分别表示以上过程及结果,数学。
15、初中数学人教版七年级上册第一章 有理数1.3 有理数的加减法1.3.1 有理数的加法测试时间:15 分钟一、选择题1.下列运算中,正确的是( ) A.(+6)+(-13)=+7 B.(+6)+(-13)=-19C.(+9.05)+(-9.05)=18.1 D.(-3.75)+ =-279 3536答案 D A 项、B 项的结果应为-7,C 项的结果应为 0.2.计算 43+(-77)+27+(-43)的结果是( )A.50 B.-104 C.-50 D.104答案 C 先将互为相反数的两数相加,再依据加法法则进行计算即可.原式=(-43+43)+(-77+27)=-50.故选 C.3.运用加法的运算律计算 +(-18)+ +(-6.8)+18+(-3.2),最适当的是( )(+613) (+423)A. +(-18)+(-6.8)+(-3.2)(+61。
16、1,1.3 有理数的加减法,1.3.1 有理数的加法 第1课时,2,1.了解有理数加法的意义;2.理解有理数加法的法则;3.能根据有理数加法法则熟练地进行有理数加法运算.,3,一只可爱的小企鹅,在一条左右走向的笔直公路上蹒跚而行.现规定向右为正,向左为负. 如果小企鹅先向右行走3米,再继续向右行走4米,则小企鹅两次一共向哪个方向行走了多少米?,答:小企鹅两次一共向右行走了7米,写成算式为: (+3)+(+4)=+7; 即小企鹅位于原来位置的右方7米处.,4,如果小企鹅先向左行走3米,再继续向左行走4米,则小企鹅两次一共向哪个方向行走了多少米?,-7,。
17、13.1 有理数的加法第 1 课时 有理数的加法法则1佳佳家冰箱冷冻室的温度为15 ,求调高 3 后的温度,这个过程可以用下列算式表示的是( )A15(3)18 B15(3)12 C15312 D15(3)182下列各式中,计算结果为正的是( )A(7)4 B2.7(3.5) C49 D0(2)3计算:(1)(6)(8); (2)(7)(7); (3)(7)(4);(4)(2.5)(1.5); (5)0(2)4在进行两个异号有理数的加法运算时,其计算步骤如下:将绝对值较大的有理数的符号作为结果的符号并记住;将记住的符号和绝对值的差一起作为最终的计算结果;用较大的绝对值减去较小的绝对值;求两个有理数的绝对值;比较两个绝对值的大。
18、1,1.3.1 有理数的加法 第2课时,2,2.应用有理数的加法解决实际问题.,1.能运用加法运算律简化加法运算.,3,(1)同号两数相加,取_,_.,相同的符号,并把绝对值相加,(2)异号两数相加,取_, _.,绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值,(3)互为相反数的两数相加得_,(4)一个数同零相加仍得_,零,这个数,4,+,(), +,(),(-8),6,6,(-8),6,(-8),6,1,1,(1)请在下列图案内任意填入一个有理数, 要求相同的图案内填相同的数(至少有一个是负数).,(2)算出各算式的结果,比较左、右两边算式的结果 是否相同.,(3)请同学们说说自己的。
19、1.3.1 有理数的加法,1.掌握加法法则,体会加法法则的意义 。 2.利用加法法则正确地进行有理数的加法运算.,有理数加法法则. 教学难点: 异号两数相加的法则,教学目标:,教学重点:,动脑筋,探索新知,现在我们来做数学演示,同学们根据演示写出数学式子.,规定: 向右为正 向左为负,1、 向右走3米,再向右走2米,两次后向什么方向一共走了多少米 ?,(+3)+(+2)=+5,+3,+2,情形1,+5,2、向左走3米,再向左走2米,两次后向什么方向一共走了多少米 ?,- 2,- 3,(-3)+(-2)= - 5,情形2,-5,( - 7 ) + (- 6 ) =,( - 8 ) + (- 6 ) =,(+ 5) + (+ 15) =,(+9。
20、1.3 有理数的加减法1.3.1 有理数的加法能力提升1.两个数相加,若和为负数,则这两个数( )A.必定都为负数 B.总是一正一负C.一定是 0和负数 D.至少有一个负数2.对于两个有理数的和,下列说法中,正确的是( )A.一定比任何一个有理数大B.至少比其中一个有理数大C.一定比任何一个有理数小D.以上说法都不正确3.若 a与 1互为相反数,则 |a+1|等于( )A.2 B.-2 C.0 D.-14.将一刻度尺如图所示放在数轴上(数轴的单位长度是 1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的 -3.6和 x,则( )A.9x10 B.10x11C.11x12 D.12x135.若 x的相反数是 -2,。