12.2 同角三角函数的基本关系同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函 数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明 知识点 同角三角函数的基本关系式 1同角三角函数的基本关系式 (1)平方关
1.3.4 三角函数的应用 学案含答案Tag内容描述:
1、12.2 同角三角函数的基本关系同角三角函数的基本关系 学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函 数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明 知识点 同角三角函数的基本关系式 1同角三角函数的基本关系式 (1)平方关系:sin2cos21. (2)商数关系:tan sin cos k 2,kZ . 2同角三角。
2、12.2同角三角函数关系学习目标1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明知识点同角三角函数的基本关系式1同角三角函数的基本关系式(1)平方关系:sin2cos21.(2)商数关系:tan .2同角三角函数基本关系式的变形(1)sin2cos21的变形公式sin21cos2;cos21sin2.(2)tan 的变形公式sin cos_tan_;cos .1sin2cos21.()提示在同角三角函数的基本关系式中要注意是“同角”才成立,即sin2cos21.2sin2cos21.()提示在sin2cos21中,令可得s。
3、第2课时二倍角的三角函数的应用一、选择题1化简的结果为()Atan Btan 2 C1 D2答案B解析原式tan 2.2若cos 2,则sin4cos4等于()A. B. C. D.答案C解析sin4cos4(sin2cos2)22sin2cos21sin221(1cos22)1.3设sin,则sin 2等于()A B. C. D答案A解析sin 2cos2sin2121.4已知tan ,则等于()A. B C D.答案D解析tan .5.等于()A2 B. C4 D.答案C解析原式4.二、填空题6若为第三象限角,则_.答案0解析为第三象限角,cos 0,sin 0, 。
4、5 5. .7 7 三角函数的应用三角函数的应用 基础达标 一选择题 1.y2sin12x3的振幅频率和初相分别为 A.2,4,3 B.2,14,3 C.2,14,3 D.2,4,3 解析 由题意知 A2,f1T214,初相为3. 答案 C。
5、9三角函数的简单应用基础过关1如图,是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将移至()A甲B乙C丙D丁解析该题目考察了最值与周期间的关系;相邻的最大值与最小值之间间隔区间长度相差半个周期,选C.答案C2电流强度I(安)随时间t(秒)变化的函数IAsin(t)(A0,0,0)的图像如图所示,则当t秒时,电流强度是()A5安B5安C5 安D10安解析由图像知A10,100,I10sin(100t)(,10)为五点中的第二个点,100.,I10sin(100t),当t秒时,I5安答案A3若近似认为月球绕地球公转与地球绕太阳公转的轨道在同一平面内,且均为正圆,又知。
6、32任意角的三角函数32.1任意角三角函数的定义(一)学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号知识链接在初中,我们已经学过锐角三角函数如图,在RtABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦,余弦,正切分别是什么?答锐角A的正弦,余弦,正切依次为:sinA,cosA,tanA.预习导引1三角函数的定义(1)正弦、余弦、正切如图,在的终边上任取一点P(x,y),设OPr(r0)定义:sin,cos,tan,分别称为角的正弦、余弦、正切依照上述定义,对于每一个确定的角,都分别有唯一确定的正弦值、余弦值与之对应:当a2。
7、第2课时二倍角的三角函数的应用基础过关1.函数f(x)2cos2xsin 2x的最小值是()A.1 B.1 C.1 D.2解析f(x)1cos 2xsin 2x1sin,f(x)的最小值为1.答案B2.设acos 6sin 6,b,c,则a,b,c的大小关系为()A.abc B.cabC.bca D.acb解析asin 30cos 6cos 30sin 6sin 24,bsin 26,csin 25,所以acb.答案D3.函数f(x)sin2 xsin xcos x1的最小正周期是_,最小值是_.解析f(x)sin2xsin xcos x1sin 2x1sin 2xcos 2xsin,所以T。
8、3.2二倍角的三角函数第1课时二倍角的三角函数学习目标1.会用两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用知识点二倍角公式1倍角公式sin 22sin cos .(S2)cos 2cos2sin212sin22cos21.(C2)tan 2.(T2)2二倍角公式的重要变形升幂公式1cos 22cos2,1cos 22sin2,1cos 2cos2,1cos 2sin2 .1sin 2sin cos .()2cos 4cos22sin22.()3对任意角,tan 2.()提示公式中所含各角应使三角函数有意义如及,上式均无意义.题型一给角求值例1求下列各式的值:(1)cos 72c。
9、 1.2 任意角的三角函数任意角的三角函数 12.1 任意角的三角函数任意角的三角函数(一一) 学习目标 1.理解并掌握任意角的三角函数定义.2.借助任意角三角函数的定义理解并掌握 正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终 边相同的角的同一三角函数值相等 知识点一 任意角的三角函数 1单位圆 在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的。
10、12.1 任意角的三角函数任意角的三角函数(二二) 学习目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数 线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题 知识点一 三角函数的定义域 正弦函数 ysin x 的定义域是 R;余弦函数 ycos x 的定义域是 R;正切函数 ytan x 的定 义域是 x xR且xk 2,kZ 。
11、1.2任意角的三角函数1.2.1三角函数的定义学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.3.掌握正弦、余弦、正切函数的定义域.知识点一任意角的三角函数使锐角的顶点与原点O重合,始边与x轴的正半轴重合,在终边上任取一点P,作PMx轴于点M,设P(x,y),|OP|r.(1)定义叫做角的余弦,记作cos ,即cos ;叫做角的正弦,记作sin ,即sin ;叫做角的正切,记作tan ,即tan .依照上述定义,对于每一个确定的角,都分别有唯一确定的余弦值、正弦值与之对应;当k(kZ)时,它有唯一的正切值与之对应.因此这三个对应法则都是。
12、 三角函数的应用及利用三角函数测高 第4讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.三角函数的一般应用 2.用三角函数解方位角、视角问题 3.利用三角函数测高 教学目标 1.掌握三角函数的应用 2.掌握利用三角函数解决实际问题 教学重点 能熟练掌握利用三角函数解决实际问题 教学难点 能熟练掌握利用三角函数解决实际问题 。
13、5 5. .7 7 三角函数的应用三角函数的应用 一选择题 1.y2sin12x3的振幅频率和初相分别为 A.2,4,3 B.2,14,3 C.2,14,3 D.2,4,3 答案 C 解析 由题意知 A2,f1T214,初相为3. 2.如图。
14、1.2任意角的三角函数12.1任意角的三角函数第1课时任意角的三角函数学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号知识点一任意角的三角函数前提如图,设是一个任意角,P(x,y)是它的终边上任意一点定义正弦比值叫做的正弦,记作sin ,即sin 余弦比值叫做的余弦,记作cos ,即cos 正切比值(x0)叫做的正切,记作tan ,即tan 三角函数正弦、余弦、正切都是以角为自变量,以角的终边上点的坐标的比值为函数值的函。
15、 1.6 三角函数模型的简单应用三角函数模型的简单应用 学习目标 1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象 的重要函数模型 知识点 利用三角函数模型解释自然现象 在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人 的情绪、体力、智力等心理、生理状况都呈现周期性变化 1利用三角函数模型解决实际问题的一般步骤 第一步:阅读理解,审清题意。
16、第2课时二倍角的三角函数的应用学习目标1.进一步熟练掌握二倍角公式的特征及正用、逆用.2.掌握二倍角公式的变形即降幂公式的特征.3.会用二倍角公式进行三角函数的一些简单的恒等变换知识点降幂公式1sin2.2cos2.3tan2.1若cos ,则sin .()2cos2.()题型一应用半角公式求值例1已知sin ,3,求cos和tan .考点利用简单的三角恒等变换化简求值题点利用半角公式化简求值解sin ,且3,cos .,cos .tan 2.反思感悟利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解(2)明范围:由于半。
17、9三角函数的简单应用学习目标1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型知识点利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化(1)利用三角函数模型解决实际问题的一般步骤:第一步:阅读理解,审清题意读题要做到逐字逐句,读懂题中的文字,理解题目所反映的实际背景,在此基础上分析出已知什么、求什么,从中提炼出相应的数学问题第二步:收集、整理数据,建立数学模型。
18、1.3.4三角函数的应用一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s cm和时间t s的函数关系式为s6sin,那么单摆来回摆一次所需的时间为()A. s B. s C50 s D100 s答案A2.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将移至()Ax轴上 B最低点C最高点 D不确定考点三角函数模型的应用题点三角函数在天文、物理学方面的应用答案C3.一单摆如图所示,以OA为始边,OB为终边的角()与时间t(s)满足关系式sin,t0,),则当t0时,角的大小及单摆频率是()A2, B.,C., D2,考点三角函数模型的应用题。
19、1.3.4三角函数的应用基础过关1.如图所示,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧AP的长为l,弦AP的长为d,则函数df(l)的图象大致是()解析df(l)2sin .答案C2.电流强度I(安)随时间t(秒)变化的函数IAsin(t)(A0,0,0)的图象如图所示,则当t秒时,电流强度是()A.5安 B.6安 C.5安 D.6安解析由图象知A10,100,I10sin(100t).(,10)为五点中的第二个点,100,I10sin(100t),当t秒时,I5安.答案A3.如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s cm和时间t s的函数关系式为s6sin(100t),。
20、1.3.4三角函数的应用学习目标1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型知识点利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化利用三角函数模型解决实际问题的一般步骤:第一步:阅读理解,审清题意读题要做到逐字逐句,读懂题中的文字,理解题目所反映的实际背景,在此基础上分析出已知什么、求什么,从中提炼出相应的数学问题第二步:收集、整理数据,建立数学模型根据。