欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.4.2 正弦函数余弦函数的性质一课时对点习含答案

1.3三角函数的图象与性质 1.3.1正弦函数的图象与性质(一) 一、选择题 1.在同一坐标系中,函数ysin x,x0,2与ysin x,x2,4的图象() A.重合 B.形状相同,位置不同 C.关于y轴对称 D.形状不同,位置相同 答案B 解析由正弦曲线,知B正确. 2.用五点法画ysin x,

1.4.2 正弦函数余弦函数的性质一课时对点习含答案Tag内容描述:

1、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)一、选择题1.在同一坐标系中,函数ysin x,x0,2与ysin x,x2,4的图象()A.重合 B.形状相同,位置不同C.关于y轴对称 D.形状不同,位置相同答案B解析由正弦曲线,知B正确.2.用五点法画ysin x,x0,2的图象时,关键点不包括()A. B. C.(,0) D.(2,0)答案A解析易知不是关键点.3.方程sin x的根的个数是()A.7 B.8 C.9 D.10答案A解析在同一坐标系内画出y和ysin x的图象如图所示.根据图象可知方程有7个根.4.对于正弦函数的图象,有以下四个说法:关于原点对称;关于x轴对称;关于y轴对称;有。

2、1.3.2余弦函数、正切函数的图象与性质(一)一、选择题1.若ysin x是减函数,ycos x是增函数,那么角x在()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C2.函数y2cos x的单调递增区间是()A.2k,2k2 (kZ)B.k,k2 (kZ)C. (kZ)D.2k,2k (kZ)答案D解析令ucos x,则y2u,y2u在u(,)上是增函数,y2cos x的增区间,即ucos x的增区间,即vcos x的减区间2k,2k (kZ).3.下列函数中,周期为,且在上为减函数的是()A.ysin B.ycosC.ysin D.ycos答案A解析因为函数周期为,所以排除C,D.又因为ycossin 2x在上为增函数,故B不符合.故选A.4.要得到ycos的图。

3、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。

4、第第 3 3 课时课时 正弦函数正弦函数余弦函数的性质的综合问题余弦函数的性质的综合问题 课时对点练课时对点练 1下列函数中,最小正周期为 ,且图象关于直线 x3对称的函数是 Ay2sin2x3 By2sin2x6 Cy2sinx23 Dy。

5、4.3单位圆与正弦函数、余弦函数的基本性质一、选择题1函数y的定义域是()A.(kZ)B.(kZ)C.(kZ)D2k,(2k1)(kZ)答案B解析由已知,得2kx2k(kZ)2函数ysin 2x的递减区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)答案B解析由2k2x2k,kZ,得kxk,kZ,ysin 2x的递减区间是(kZ)3函数ylg的定义域为()A.B.,kZC.,kZDR答案C解析cos x0,cos x,2kx2k,kZ.函数ylg的定义域为,kZ.4函数y4sin x3在,上的递增区间为()A. B.C. D.答案B解析ysin x的递增区间就是y4sin x3的递增区间5y3cos x,x的最大。

6、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(一一) 基础过关 1函数 f(x)xsin x,xR( ) A是奇函数,但不是偶函数 B是偶函数,但不是奇函数 C既是奇函数,又是偶函数 D既不是奇函数,又不是偶函数 解析 由 f(x)xsin x(xsin x)f(x)可知 f(x)是奇函数 答案 A 2下列函数中,周期为 2 的是( ) Aysin x 2 Bysin 2x Cy|。

7、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。

8、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(二二) 一、选择题 1符合以下三个条件: 在 0, 2 上单调递减; 以 2 为周期; 是奇函数 这样的函数是( ) Aysin x Bysin x Cycos x Dycos x 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用 答案 B 解析 在 0, 2 上单调递减,可以排除 A,是奇函数可以排除 C,D。

9、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(一一) 一、选择题 1下列是定义在 R 上的四个函数图象的一部分,其中不是周期函数的是( ) 考点 正弦、余弦函数的周期性 题点 正弦、余弦函数的周期性 答案 D 解析 对于 D,x(1,1)时的图象与其他区间图象不同,不是周期函数 2下列说法中正确的是( ) A当 x 2时,sin x 6 sin x,所以 6不是 f(x)si。

【1.4.2 正弦函数余弦函数的性质一课时对点习含答案】相关DOC文档
1.3.1 正弦函数的图象与性质(一)课时对点练(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)课时对点练(含答案)
4.3 单位圆与正弦函数、余弦函数的基本性质 课时对点练含答案
1.4.2 正弦函数、余弦函数的性质(一)课时练习(含答案)
1.4.1 正弦函数、余弦函数的图象 课时对点习(含答案)
1.4.2 正弦函数、余弦函数的性质(二)课时对点习(含答案)
1.4.2 正弦函数、余弦函数的性质(一)课时对点习(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开