欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

1.4二次函数的应用1课件

UNIT THREE,第三单元 函数,第 16 课时 二次函数的实际应用,| 考点聚焦 |,考点一 二次函数的最值应用,考点二 建立二次函数模型解决问题,| 对点演练|,题组一 必会题,题组二 易错题,探究一 利用二次函数解决抛物线形问题,探究二 二次函数在营销问题方面的应用,针对训练,探究三 利用

1.4二次函数的应用1课件Tag内容描述:

1、UNIT THREE,第三单元 函数,第 16 课时 二次函数的实际应用,| 考点聚焦 |,考点一 二次函数的最值应用,考点二 建立二次函数模型解决问题,| 对点演练|,题组一 必会题,题组二 易错题,探究一 利用二次函数解决抛物线形问题,探究二 二次函数在营销问题方面的应用,针对训练,探究三 利用二次函数解决决策问题微专题,考向1 顶点的横坐标在自变量取值范围内的决策问题,考向2 顶点的横坐标不在自变量取值范围内的决策问题,强化训练,。

2、第22章:二次函数,22.2 二次函数与一元一次方程,人教版九年级上册,学习目标:,1.了解二次函数与一元二次方程之间的关系。2.理解一元二次方程根的几何意义,会灵活运用一元二次方程根的判别式处理二次函数图象与x轴的交点问题。,问题1:如图,以40m/s的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题: (1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,(1)球的飞行高度能否达到15m?如果能,。

3、课题17 二次函数的综合应用,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 利用二次函数与一元二次方程的关系解决实际问题 根据二次函数与一元二次方程的关系,可以解决一些实际问题,基本方法为: 当已知某个 函数值 时,通过解一元二次方程,即可求得相应的 自变量 的值.,基础知识梳理,考点二 利用二次函数解决其他综合性问题 二次函数与平面几何、一次函数、反比例函数等知识相结合,可以解决一些 综合性的实际问题,基本方法是综合运用上述知识,根据有关各量之间的关 系,得到一个 二次 函数关系式,则问题可转化为解 二次函数 。

4、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。

5、第三单元 函数,课时 18 二次函数的应用,二次函数的应用,考点自查,1.解题步骤 (1)先分析题目中的 ,列出函数解析式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验取值是否在自变量的取值范围内,并求相关的值; (5)解决提出的实际问题. 2.主要考查的方向 (1)和实际生活相结合的最大(小)值问题; (2)结合动点计算几何图形的长度或面积的问题; (3)和其他函数相结合的问题; (4)其他类型的问题.,数量关系,对点自评,图18-1,A.-20 m B.10 m C.20 m D.-10 m,答案 C,2.如图18-2,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是(。

6、,课时17 二次函数的应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 二次函数的最值 二次函数yax2bxc通过配方可得ya,其抛物线关于直线x_对称,顶点坐标为(_,_) (1)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ (2)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ 2. 用二次函数解决实际问题 应用二次函数解决实际问题的基本思路: (1)理解问题 (2)分析问题中的变量和常量,以及它们之间的关系 (3)用函数关系式表。

7、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。

8、1.4 二次函数的应用(3)对于二次函数 y=ax2+bx+c(a0) ,当 y=0(或其他数值 m)时,就成了一元二次方程ax2+bx+c=0(或 m),方程的解就是抛物线与 x 轴(或直线 y=m)交点的横坐标.因此可利用二次函数的图象解一元二次方程或一元二次不等式.1.已知抛物线 y=x2-x-1 与 x 轴的一个交点为 (m,0) ,则代数式 m2-m+2018 的值为(D ).A.2016 B.2017 C.2018 D.20192.若函数 y=x2-2x+b 的图象与坐标轴有三个交点,则 b 的取值范围是(A).A.b1 且 b0 B.b1 C.0b1 D.b13.如图所示为二次函数 y=-x2+2x+4 的图象,使 y1 成立的 x 的取值范围是(D).A.-1x 3 B.x-1。

9、1.4 二次函数的应用(2)与二次函数有关的实际问题有以下几类:面积问题;销售问题;增长率问题;勾股定理求距离问题等,列函数表达式时要注意正确应用等量关系.1.一个小球被抛出后,如果距离地面的高度 h(m)和运动时间 t(s)的函数表达式为 h=-5t2+10t+1,那么小球到达最高点时距离地面的高度是(D).A.1m B.3m C.5m D.6m2.烟花厂为春节特别设计了一种新型礼炮,这种礼炮的升空高度 h(m)关于飞行时间 t(s)的函数表达式为 h=- t2+12t+30.若这种礼炮在上升到最高点引爆,则从点火升空到引爆需3要的时间为(B).A.3s B.4s C.5s D.6s3.如图所示,假。

10、1.2 二次函数的图像二次函数的图像(1) 回顾知识回顾知识: : 一、正比例函数一、正比例函数y=kx(k 0)其图象是什么。)其图象是什么。 二、一次函数二、一次函数y=kx+b(k 0)其图象又是什么。)其图象又是什么。 正比例函数正比例函数y=kx(k 0)其图象是一条经过)其图象是一条经过原点原点 的直线。的直线。 一次函数一次函数y=kx+b(k 0)其图象也是一条直线。)其。

11、1.4 二次函数的应用(2) (巩固练习)姓名 班级 第一部分1. 小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为x,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本、利和为 y 元,则 y 与 x 之间的函数关系式为( )A. y=500(x+1)2 B. y=x2+500 C. y=x2+500x D. y=x2+5x2.小明在某次投篮中,球的运动路线是抛物线 的一部分,如图213.5yx所示,若命中篮圈中心,则他与篮底的距离 L 是( )A. 4.6m B. 4.5m C. 4m D. 3.5m3. 已知直角三角形的两直角边之和为 2,则斜边长可能达到的最小值是 .4. 函数 y=x。

12、1.4 二次函数的应用(3) (巩固练习)姓名 班级 第一部分1. 用配方法将函数 写成 的形式是( )12xykhxay2A. B. C. D.12xy32 12312xy2. 下列二次函数中,经过原点的是( )A. y=x21 B. y=(x1) 2 C. y=x23x+2 D. y= (x2) 2+43. 将抛物线 y=2x2+5 向右平移 2 个单位后,所得抛物线的解析式是( )A. (4,5) B. (4,5) C. (4,5) D. (4,5)4.抛物线 y=x24x 7 的顶点坐标是 ( )A. (2,11) B. (2,7) C. (2,11) D. (2,3) 5. 二次函数 y=2x 2+4x9 的最高点的纵坐标是。

13、1.4 二次函数的应用(1) (巩固练习)姓名 班级 1.4 二次函数的应用(1)第一部分1. 对于二次函数 y= 5x2+8x1,下列说法中正确的是( )A. 有最小值 2.2 B. 有最大值 2.2 C. 有最小值2.2 D. 有最大值2.22. 小敏用一根长为 8cm 的细铁丝围成矩形,则矩形的最大面积是( )A. 4cm2 B. 8cm2 C. 16cm2 D. 32cm2 3. 在半径为 4cm 的圆面上 ,从中挖去一个半径为 x 的同心圆面,剩下一个圆环的面积为y,则 y 关于 x 的函数关系为 ( )A. y= x24 B. y= (2x) 2 C. y= (x2+4) D. y= x2+164. 已知二次函数 y=(x1) 2+(x3) 2 ,当 x 时,函数达到最小。

14、1.4二次函数的应用二次函数的应用 (第(第2课时)课时) 256yxx 2 58112xx 拟建中的一个温室的平面图如图拟建中的一个温室的平面图如图,如果温室外围是一如果温室外围是一 个矩形个矩形,周长为周长为120米米,室内通道的尺寸如图室内通道的尺寸如图,设一条边设一条边 长为长为x米米,种植面积为种植面积为y平方米平方米.试建立试建立y与与x的函数关系的函数关系 式式,并当并当x取何值时。

15、1.4二次函数的应用二次函数的应用 (第(第3课时)课时) 1.利用函数解决实际问题的基本利用函数解决实际问题的基本 思想方法思想方法?解题步骤解题步骤? 实际问题实际问题 抽象抽象 转化转化 数学问题数学问题 运用运用 数学知识数学知识 问题的解问题的解 返回解释返回解释 检验检验 创设情景创设情景,引入新课引入新课 2.二次函数应用二次函数应用的思路怎样的思路怎样? (1)理解问题理解问题。

16、22.3实际问题与二次函数(1),几何图形最值问题,学习目标,学习重难点,会列出二次函数关系式,并解决几何图形的最大(小)值。,1、通过探究几何图形的长度和面积之间的关系,列出函数关系式;并确定自变量的取值范围。 2、会用二次函数顶点公式求实际问题中的极值。,二、新课引入,1.二次函数y=a(x-h)+k的图象是一 条 ,它的对称轴是 ,顶点坐标是 . 2.二次函数y=ax+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 3.二次函数y=2(x-3)+5的对称轴是 ,顶点坐标是 . 4.二次函数y=x-4x+9的对称轴是 ,顶点坐标是 .,抛物线,X= h,(h,k),抛物线,X= 3。

17、1.4 二次函数的应用二次函数的应用 (第(第1 1课时)课时) 某商场销售一种名牌衬衫,平均每天售出某商场销售一种名牌衬衫,平均每天售出20件,每件盈利件,每件盈利 40元,为了扩大销售,增加盈利,尽量减少库存,商场决元,为了扩大销售,增加盈利,尽量减少库存,商场决 定采取适当的降价措施,经调查发现,如果每件衬衫每降定采取适当的降价措施,经调查发现,如果每件衬衫每降 价价1元,商场平均每天可多。

18、 例例4 4: : 一个球从地面上竖直向上弹起时的速度为一个球从地面上竖直向上弹起时的速度为10m/s,经,经 过过t(s)时球的高度为)时球的高度为h(m)。已知物体竖直上抛运动)。已知物体竖直上抛运动 中,中,h=v0t 0.5 gt (v0表示物体运动上弹开始时的速度,表示物体运动上弹开始时的速度, g表示重力系数,取表示重力系数,取g=10m/s )。问球从弹起至回到地)。问球从。

19、小结:应用二次函数的性质解决日常生小结:应用二次函数的性质解决日常生 活中的最值问题,一般的步骤为:活中的最值问题,一般的步骤为: 把问题归结为二次函数问题(设自变量和函数);把问题归结为二次函数问题(设自变量和函数); 在自变量的取值范围内求出最值;(在自变量的取值范围内求出最值;(数形结合找最值数形结合找最值) 求出函数解析式(求出函数解析式(包括自变量的取值范围包括自变量的取值范围););。

20、 例例1:用:用8 m长的铝合金型材做一个形状如图所示的长的铝合金型材做一个形状如图所示的 矩形窗框矩形窗框应做成长应做成长、宽各为多少时宽各为多少时,才能使做成的才能使做成的 窗框的透光面积最大窗框的透光面积最大?最大透光面积是最大透光面积是 多少多少? 解:设矩形窗框的面积为解:设矩形窗框的面积为y,由题意得由题意得, x x y 2 38 xx4 2 3 2 3 8 ) 3 4 。

【1.4二次函数的应用1课件】相关PPT文档
2019年苏科版中考数学二轮复习《第16课时:二次函数的实际应用》课件
22.2用函数的观点看一元二次方程(1)课件
2019版河北省中考数学一轮复习《课题17:二次函数的综合应用》课件
2019届百色市中考数学《第14课时:二次函数的应用》复习课件
2019年广西柳州市中考数学总复习课件18:二次函数的应用
《中考大一轮数学复习》课件 课时17 二次函数的应用
5.2二次函数的图像和性质(1)ppt课件
1.2 二次函数的图像(1)课件
1.4二次函数的应用(第2课时) (共17张PPT)
1.4二次函数的应用(第3课时) (共23张PPT)
22.3二次函数应用(1)课件
1.4二次函数的应用(第1课时) (共13张PPT)
1.4二次函数的应用(3)课件
1.4二次函数的应用(2)课件a
1.4二次函数的应用(1)课件
【1.4二次函数的应用1课件】相关DOC文档
2018-2019学年浙教版九年级上数学1.4二次函数的应用(3)同步导学练(含答案)
2018-2019学年浙教版九年级上数学1.4二次函数的应用(2)同步导学练(含答案)
浙教版九年级数学上册1.4 二次函数的应用(2)巩固练习含答案
浙教版九年级数学上册1.4 二次函数的应用(3)巩固练习含答案
浙教版九年级数学上册1.4 二次函数的应用(1)巩固练习含答案
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开