1.3.2 “杨辉三角”与二项式系数的性质,第一章 1.3 二项式定理,学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数. 2.理解二项式系数的性质并灵活运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 “杨辉三角”与二项式系数的性质,(ab)n的展开
1.5.1 二项式定理 学案苏教版高中数学选修2-3Tag内容描述:
1、1.3.2 “杨辉三角”与二项式系数的性质,第一章 1.3 二项式定理,学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数. 2.理解二项式系数的性质并灵活运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 “杨辉三角”与二项式系数的性质,(ab)n的展开式的二项式系数,当n取正整数时可以表示成如下形式:,思考1,从上面的表示形式可以直观地看出什么规律?,答案,答案 在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和.,思考2,计。
2、习题课 二项式定理,第一章 计数原理,学习目标 1.能熟练地掌握二项式定理的展开式及有关概念. 2.会用二项式定理解决与二项式有关的简单问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.二项式定理及其相关概念,2.二项式系数的四个性质(杨辉三角的规律) (1)对称性: ; (2)性质: ; (3)二项式系数的最大值:当n是偶数时,中间的 取得最大值,即_最大;当n是奇数时,中间的 相等,且同时取得最大值,即_ 最大; (4)二项式系数之和: ,所用方法是_ _.,赋,值法,一项,两项,m,1,题型探究,命题角度1 两个二项式积的问题 例1 (1)在(1x)6(1。
3、讲解人:时间:2020.6.1 PEOPLES EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-3 1 . 3 . 1 二 项 式 定 理二 项 式 定 理 第1章 计数原理 人 教 版 高 中 数 学 选 修 2 - 3 先看下面的问题 若今天是星期一,再过810天后的那一天是星期几? 1010 8= (7+1) 01019910 10。
4、2.4 二项分布二项分布 学习目标 1.了解n次独立重复试验的模型.2.掌握二项分布公式.3.能利用独立重复试验的模 型及二项分布解决一些简单的实际问题 知识点一 独立重复试验 思考 1 要研究抛掷硬币的规律,需做大量的掷硬币试验,试验的条件有什么要求? 答案 条件相同 思考 2 试验结果有哪些? 答案 正面向上或反面向上 思考 3 各次试验的结果有无影响? 答案 无,即各次试验相互独立 梳理 。
5、5.2 二项式系数的性质二项式系数的性质 学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2. 理解二项式系数的性质并灵活运用 知识点 二项式系数的性质 (ab)n的展开式的二项式系数,当 n 取正整数时可以表示成如下形式: 思考 1 同一行中,系数有什么规律? 答案 两端都是 1,与两端 1 等距离的项的系数相等 思考 2 相邻两行,系数有什么规律? 答案 。
6、1.3 二项式定理一、二项式定理1二项式定理,这个公式叫做二项式定理(binomial theorem),等号右边的多项式叫做的二项展开式,共有n+1项,其中各项的系数叫做二项式系数(binomial coefficient).【注】二项式定理是一个恒等式,这里的a,b既可以取任意实数,也可以取任意的代数式,还可以是别的.如果设a=1,b=x,则得到公式: .2二项展开式的通项二项展开式中的叫做二项展开式的通项,用表示,即通项为展开式的第项: .学-科网通项的应用:利用二项展开式的通项可以求出展开式中任意指定的项(或系数),如常数项、有理项等. 【注】二项。
7、1.3.1 二项式定理,第一章 1.3 二项式定理,学习目标 1.能用计数原理证明二项式定理. 2.掌握二项式定理及其展开式的通项公式. 3.会用二项式定理解决与二项展开式有关的简单问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 二项式定理及其相关概念,思考1,我们在初中学习了(ab)2a22abb2,试用多项式的乘法推导(ab)3,(ab)4的展开式.,答案,答案 (ab)3a33a2b3ab2b3,(ab)4a44a3b6a2b24ab3b4.,思考2,上述两个等式的右侧有何特点?,答案,答案 (ab)3的展开式有4项,每项的次数是3;(ab)4的展开式有5项,每一项的次数为4.,思考3,能用类。
8、1.5.2 二项式系数的性质及应用二项式系数的性质及应用 学习目标 1.了解二项式系数的性质.2.理解二项式系数性质的应用.3.掌握应用“赋值法” 知识点 二项式系数的性质 (ab)n的展开式的二项式系数,当 n 取正整数时可以表示成如下形式: 思考 1 从上面的表示形式可以直观地看出什么规律? 答案 在同一行中, 每行两端都是 1, 与这两个 1 等距离的项的系数相等; 在相邻的两行中, 除。
9、 1.3 二项式定理二项式定理 1.3.1 二项式定理二项式定理 学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会 用二项式定理解决与二项展开式有关的简单问题 知识点 二项式定理及其相关概念 (ab)2a22abb2; (ab)3a33a2b3ab2b3; (ab)4a44a3b6a2b24ab3b4; (ab)5a55a4b10a3b210a2b35ab。
10、5 二项式定理二项式定理 51 二项式定理二项式定理 学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会 用二项式定理解决与二项展开式有关的简单问题 知识点 二项式定理及其相关概念 思考 1 我们在初中学习了(ab)2a22abb2,试用多项式的乘法推导(ab)3,(ab)4 的展开式 答案 (ab)3a33a2b3ab2b3,(ab)4a44a3b6a2b。
11、15 二项式定理二项式定理 15.1 二项式定理二项式定理 学习目标 1.理解二项式定理的相关概念.2.掌握二项式定理的特征及其展开式的通项公式.3. 会用二项式定理解决与二项展开式有关的简单问题 知识点 二项式定理 思考 1 我们在初中学习了(ab)2a22abb2,试用多项式的乘法推导(ab)3,(ab)4的 展开式 答案 (ab)3a33a2b3ab2b3,(ab)4a44a3b6a2b2。