第 4 课时 二次函数 yax 2bxc 的图象与性质知识点 1 二次函数 yax 2bxc 与 ya( xh) 2k 的关系12018山西用配方法将二次函数 yx 28x9 化为 ya(xh) 2k 的形式为( )Ay(x4) 27 By(x4) 225Cy (x4) 27 Dy(x4) 2252
1.5 函数yAsinx的图象二课时练习含答案Tag内容描述:
1、第 4 课时 二次函数 yax 2bxc 的图象与性质知识点 1 二次函数 yax 2bxc 与 ya( xh) 2k 的关系12018山西用配方法将二次函数 yx 28x9 化为 ya(xh) 2k 的形式为( )Ay(x4) 27 By(x4) 225Cy (x4) 27 Dy(x4) 2252试通过配方法求出抛物线 yx 24x 8 的顶点坐标和对称轴,并指出当 x 在什么范围内时,y 随 x 的增大而减小知识点 2 抛物线 yax 2bxc 的平移3在同一平面直角坐标系内,将函数 yx 24x1 的图象先向右平移 3 个单位,再向下平移 1 个单位,得到的图象的顶点坐标是( )A(2,5) B(1,4)C(1,6) D(2,2)42018广西将抛物线 y x26x21 向左平移 2。
2、26.2.2 第 1 课时 二次函数 yax 2k 的图象与性质知识点 1 二次函数 yax 2k 的图象与 yax 2 的图象的关系1如图 2628,将抛物线 y x2 向_平移_个单位得到抛物线13y x22;将抛物线 y x2 向_平移_个单位得到抛物线 y x22.13 13 13图 26282将二次函数 yx 2 的图象向下平移 1 个单位,则平移后的二次函数的关系式为( )Ayx 21 By x 21Cy (x1) 2 Dy(x 1) 23教材练习第 2 题变式不画出图象,回答下列问题:(1)函数 y4x 22 的图象可以看成是由函数 y4x 2 的图象通过怎样的平移得到的?(2)说出函数 y4x 22 的图象的开口方向、对称轴和顶点坐标;(3)如。
3、第 5 课时 二次函数的图象与性质基础达标训练1. (2018 攀枝花)抛物线 yx 22x2 的顶点坐标为( )A. (1,1) B. (1,1) C.(1,3) D. (1,3)2. (2018 山西) 用配方法将二次函数 yx 28x9 化为 ya(x h) 2k 的形式为( )A. y(x4) 27 B. y( x4) 225 C.y(x4) 27 D. y(x4) 2253. (2018 上海) 下列对二次函数 yx 2x 的图象的描述,正确的是( )A. 开口向下 B. 对称轴是 y 轴C. 经过原点 D. 在对称轴右侧部分是下降的4. (2018 广安) 抛物线 y(x 2) 21 可以由抛物线 yx 2 平移而得到,下列平移正确的是( )A. 先向左平移 2 个单位长度,然后向上平移 1 个单。
4、第13课时 二次函数的图象与性质(时间:45分钟)1下列函数解析式中,一定为二次函数的是( C )Ay3x1 Byax 2bxcCs2t 22t 1 Dyx 21x2(2018岳阳中考)抛物线y3(x2) 25的顶点坐标是( C )A(2,5) B(2,5)来源:学科网ZXXKC(2,5) D(2,5)3(2016玉林中考)抛物线y x2,yx 2,yx 2的共同性质是:都是开口向上;都以点(0,0) 为顶点12; 都以y轴为对称轴;都关于x轴对称其中正确的个数有( B )A1个 B 2个 C3个 D4个4二次函数yax 2bx1(a0)的图象经过点(1 ,1),则 ab1的值是( D )A3 B 1 C2 D35(2015河池中考)将抛物线yx 2向右平移2个单位,再向上平移3个单。
5、第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个单位得到的22017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2( x3) 25 By2( x3) 25Cy 2(x3) 25 Dy2( x3) 253抛物线 y( x2) 23 可以由抛物线 yx 2 平移得到,则下列平移过程正确的是( )A先向左平移 2 个单位,再向上平移 3 个单位B先向左平移 2 个单位。
6、第 2 课时 二次函数 ya(xh )2 的图象与性质知识点 1 二次函数 ya( xh) 2 的图象与 yax 2 的图象的关系1将抛物线 yx 2 向_平移_个单位得到抛物线 y( x5) 2;将抛物线yx 2 向_平移_ 个单位得到抛物线 y( x5) 2.2下列方法可以得到抛物线 y (x2) 2 的是( )25A把抛物线 y x2 向右平移 2 个单位25B把抛物线 y x2 向左平移 2 个单位25C把抛物线 y x2 向上平移 2 个单位25D把抛物线 y x2 向下平移 2 个单位253顶点是(2,0),开口方向、形状与抛物线 y x2 相同的抛物线是( )12Ay (x2) 2 By (x 2)212 12Cy (x2) 2 Dy (x2) 212 12知识点 2 二次函数 y。
7、第 4 课时 二次函数 ya( xh) 2k 的图象与性质知识要点分类练 夯实基础知识点 1 二次函数 ya(x h)2k 与 yax 2的图象的关系12017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2(x 3) 25 By 2(x3) 25Cy2(x3) 25 Dy2(x3) 252抛物线 y(x3) 22 可以由抛物线 yx 2 先向右平移 _个单位,再向上平移_个单位得到3函数 y2(x1) 21 的图象可以由函数 y2(x2) 23 的图象先向右平移_个单位,再向_平移_个单位得到知识点 2 二次函数 ya( xh) 2k 的图象与性质4教材习题 1.2 第 6 题变式二次函数 y2(x2) 21 的图。
8、22.1.3 二次函数 ya(xh) 2k 的图象和性质第 1 课时 二次函数 yax 2k 的图象和性质01 基础题知识点 1 二次函数 yax 2k 的图象1(教材 P33 练习变式 )函数 y x21 与 y x2 的图象的不同之处是 (C)13 13A对称轴 B开口方向C顶点 D形状2(自贡期中)二次函数 yx 21 的图象大致是(B)3(上海中考)如果将抛物线 yx 22 向下平移 1 个单位长度,那么所得新抛物线的解析式是(C)Ay(x1) 22 By(x1) 22Cyx 21 Dyx 234抛物线 y2x 21 在 y 轴右侧的部分是上升(填“上升”或“下降”) 5填写下列抛物线的开口方向、对称轴、顶点坐标以及最值抛物线 开口方向 对称轴。
9、1二次函数 ya(xh) 2k 的图象和性质 同步练习题基础题知识点 1 二次函数 ya( xh) 2k 的图象1二次函数 y(x2) 21 的图象大致为( )2将抛物线 yx 2 向左平移 2 个单位长度,再向下平移 3 个单位长度,得到的抛物线的函数表达式为( )Ay(x2) 23 By(x2) 23Cy(x2) 23 Dy(x2) 233对于二次函数 y(x1) 22 的图象,下列说法正确的是 ( )A开口向下B对称轴是 x1C顶点坐标是(1,2)D与 x 轴有两个交点4若抛物线 y7(x4) 21 平移得到 y7x 2,则必须 ( )A先向左平移 4 个单位,再向下平移 1 个单位B先向右平移 4 个单位,再向上平移 1 个单位C先向左平移 1 个。
10、第二课时第二课时 函数函数y yA Asinsinxx 的图象与性质的应用的图象与性质的应用 基础达标 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 解析 依题意得 T247。
11、1二次函数 ya(xh) 2的图象和性质 同步练习题基础题知识点 1 二次函数 ya( xh) 2的图象1在平面直角坐标系中,二次函数 ya(x2) 2(a0)的图象可能是 ( )2如果将抛物线 yx 2 向右平移 1 个单位,那么所得的抛物线的表达式是( )Ayx 21 Byx 21Cy(x1) 2 Dy(x1) 23抛物线 y3(x1) 2 不经过的象限是( )A第一、二象限 B第二、四象限C第三、四象限 D第二、三象限4将抛物线 yax 2 向左平移 2 个单位后,经过点(4, 4),则 a_5在同一平面直角坐标系中,画出函数 yx 2,y(x2) 2,y(x2) 2 的图象,并写出对称轴及顶点坐标知识点 2 二次函数 ya(x h)2的性质6。
12、第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2。
13、第第 2 2 课时课时 函数函数 y yA Asinsin xx 的图象的图象 二二 课时对点练课时对点练 1将函数 fxsin x 的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移3个单位长度,得到函数 gx的图象,则函。
14、1.3.3函数yAsin(x)的图象(二) 基础过关1.已知a是实数,则函数f(x)1asin ax的图象不可能是()解析当a0时,f(x)1,C符合,当02,且最小值为正数,A符合,当|a|1时,T1,T2,矛盾,D不符合.答案D2.将函数f(x)sin(2x)的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则的值可以是()A. B. C. D.解析把P代入f(x)sin(2x),解得,g(x)sin,把P代入,得k或k(kZ),观察可知填B.答案B3.函数y2sin的周期与初相之和为_.解析由正弦型函数的周期公式与初相的概念可知周期为4,初相为,所以T4.答案4.函数f(x)2sin(x。
15、 1.5 函数函数 yAsin(x)的图象的图象(一一) 一、选择题 1要得到函数 ysin 2x 3 的图象,只要将函数 ysin 2x 的图象( ) A向左平移 3个单位长度 B向右平移 3个单位长度 C向左平移 6个单位长度 D向右平移 6个单位长度 考点 三角函数图象的平移变换、伸缩变换 题点 三角函数图象的平移变换 答案 C 解析 因为ysin 2x 3 sin 2 x 6 , 。
16、 1.5 函数函数 yAsin(x)的图象的图象(二二) 一、选择题 1(2018 安徽滁州高二期末)最大值为1 2,最小正周期为 2 3 ,初相为 6的函数表达式是( ) Ay1 2sin x 3 6 By1 2sin x 3 6 Cy1 2sin 3x 6 Dy1 2sin 3x 6 考点 求三角函数的解析式 题点 三角函数中参数的物理意义 答案 D 解析 由最小正周期为2 。
17、 1.5 函数函数 yAsin(x)的图象的图象(二二) 学习目标 1.会用“五点法”画函数 yAsin(x)的图象.2.能根据 yAsin(x)的部分 图象,确定其解析式.3.了解 yAsin(x)的图象的物理意义,能指出简谐运动中的振幅、 周期、相位、初相 知识点一 “五点法”作函数 yAsin(x)(A0,0)的图象 用“五点法”作 yAsin(x) (A0,0)的图象的步骤 第一步:列表。
18、 1.5 函数函数 yAsin(x)的图象的图象(一一) 基础过关 1为了得到函数 ysin 2x 3 的图象,只需把函数 ysin 2x 的图象上所有的点( ) A向左平行移动 3个单位长度 B向右平行移动 3个单位长度 C向左平行移动 6个单位长度 D向右平行移动 6个单位长度 解析 ysin 2x 3 sin 2 x 6 , 需要将 ysin 2x 的图象向右平移 6个单位得到 ysi。
19、 1.5 函数函数 yAsin(x)的图象的图象(二二) 基础过关 1 已知简谐运动 f(x)2sin 3x | 2 的图象经过点(0,1), 则该简谐运动的最小正周 期 T 和初相 分别为( ) AT6, 6 BT6, 3 CT6, 6 DT6, 3 解析 由题意知 f(0)2sin 1,又|0,)的图象如下图所示,则 _ 解析 由图象知函数 ysin(。