欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

12.2三角形全等的判定

直角三角形全等的判定教学目标:1熟练掌握“斜边、直角边定理” ,以及熟练地利用这个定理和判定一般三角形全等的方法判定两个直角三角形全等;(重点)2熟练使用“分析综合法”探求解题思路(难点)教学过程:一、情境导入前面我们学习了判定两个三角形全等的四种方法SAS、ASA.AAS、SSS.当然这些方法也适

12.2三角形全等的判定Tag内容描述:

1、直角三角形全等的判定教学目标:1熟练掌握“斜边、直角边定理” ,以及熟练地利用这个定理和判定一般三角形全等的方法判定两个直角三角形全等;(重点)2熟练使用“分析综合法”探求解题思路(难点)教学过程:一、情境导入前面我们学习了判定两个三角形全等的四种方法SAS、ASA.AAS、SSS.当然这些方法也适用于判定两个直角三角形全等,那么直角三角形的全等的判定还有其他的方法吗?二、合作探究探究点一:运用“HL”判定直角三角形全等如图所示, AD BC, CE AB,垂足分别为 D.E, AD 交 CE 于点 F, AD EC.求证:FA FC.解析:要利用“等角对等。

2、一、三角形的概念和性质 1. 三角形的定义:由不在同一条直线上的_条线段首尾顺次相接组成的图形叫做三角形 注意:三条线段必须:不在一条直线上,首尾顺次相接,三,2. 三角形的分类,3. 三角形的高、中线、角平分线、中位线 (1)高:在三角形中,过一个顶点向它所对的边所在的直线画垂线,顶点和_之间的线段叫做三角形的高三条高的交点叫做三角形的_ 注意:高与垂线不同,高是线段,垂线是直线 (2)中线:在三角形中,连接一个顶点和它所对边的_的线段叫做三角形的中线;三角形的三条中线的交点叫做三角形的_ (3)角平分线:在三角形中,一个_角。

3、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 2 课时 相似三角形的判定定理 1,212018利辛县模拟在三角形纸片 ABC 中,AB8,BC4,AC6,按下列方法沿虚线剪下,能使阴影部分的三角形与ABC 相似的是( )2如图 27220,在ABC 与ADE 中,BAC D,要使ABC 与ADE 相似,还需满足下列条件中的( )图 27220A. B ACAD ABAE ACAD BCDEC. D ACAD ABDE ACAD BCAE3如图 27221,网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点ACB 和DCE 的顶点都在格点上,ED 的延长线交 AB 于。

4、,苏科数学,1.3 探索三角形全等的条件(7),问题情境,1工人师傅常常利用角尺平分一个角如图,在AOB的两边OA、OB上分别任取OCOD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是AOB的平分线 请同学们说明这样画角平分线的道理,1(1)请按序说出木工师傅的“操作”过程 (2)用直尺和圆规在下图中按序将木工师傅的“操作”过程作出来,并写出法 (3)请证明你的作法是正确的,建构活动,2(1)在下图中作出平角AOB的平分线 (2)过直线上一点,你能作出这条直线的垂线吗? (3)如果点在直线外呢?,建构活动,1.。

5、,苏科数学,1.3 探索三角形全等的条件(8),问题情境,1判定两个三角形全等的方法有哪些 2如何将一个等腰三角形变成两个全等的直角三角形? 3在RtABC、RtDEF 中,BE90, (1)若AD,ABDE, 则ABCDEF( ) (2)若AD,BCEF, 则ABCDEF( ) (3)若ABDE,BCEF, 则ABCDEF ( ),1你还能添加哪两个不同的条件使这两个直角三角形全等?,建构活动,2用直尺和圆规作RtABC,使C90,CBa,ABc (1)ABC就是所求作的三角形吗? (2)你作的直角三角形和其他同学所作的三角形能完全 重合吗? (3)交流之后,你发现了什么? (4)想一想,在画图时是根。

6、,苏科数学,1.3 探索三角形全等的条件(2),问题情境,1.如图,ABAC,还需补充条件_,就可根据“SAS ”证明ABEACD.,2.“三月三,放风筝”如图是小东同学自己动手制作的风筝,他根据ABCB,ABDCBD,不用度量,就知道ADCD请你用所学的知识给予说明,问题情境,数学活动,例1 如图,已知:点D、E在BC上,且BDCE,ADAE,12,由此你能得出哪两个三角形全等?请给出证明,数学活动,例2 已知:如图,AB、CD相交于点E,且 E是AB、CD 的中点 求证:AEC BED ACDB,数学运用,1. 已知:如图,点E、F在CD上,且CE DF,AE BF, AE BF. 求证:AEC BFD 你还能证得其。

7、,苏科数学,1.3 探索三角形全等的条件(1),问题情境,1操作:已知ABC,画一个与它全等的三角形, 说说你是如何画的?,1操作:如图,用一张长方形纸剪一个直角三角形, 怎样才能使全班同学剪下的直角三角形都全等?,建构活动,思考:我们确定了这个三角形的哪几个条件, 就保证了剪下的三角形全等?,2观察:下图中的三个三角形,哪两个三角形是全等三角形?,思考:ABC与PNM满足了什么条件时,它们全等? ABC为什么不与EDF全等?,3按下列作法,用直尺和圆规作ABC, 使A1,AB = a, AC = b 作MAN1 在射线AM、AN上分别作线段ABa,ACb 连接BC ABC。

8、,苏科数学,1.3 探索三角形全等的条件(4),问题情境,1判定2个三角形全等,你已有哪些方法?,2已知:如图,AD,ACBDBC, 求证:ABDC,1如图,在ABC和DEF中,AD, BE,BCEF,ABC与DEF全等吗? 能利用“角边角”证明你的结论吗?,建构活动,推论:两角及其中一角的对边分别相等的两个三角形 全等.,数学概念,数学活动,例1 如图ACBDFE,BCEF,根据“ASA”,应补充一个直接条件_根据“AAS”,那么补充的条件为_,才能使ABCDEF,数学活动,例2 如图,BECD,12, 则ABAC吗?为什么?,数学活动,例3 已知:如图,ABCABC,AD、 AD分别是ABC和ABC的高 证明。

9、,苏科数学,1.3 探索三角形全等的条件(3),问题情境,1上节课你学会了哪种证明三角形全等的方法?,2判断三角形全等至少要有几个条件?,3请猜想,构成全等还有哪些条件组合 ?,1小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?,建构活动,2请你用圆规和直尺画ABC, 使ABa,A,B (1)作ABa (2)在AB的同一侧分别作MAB, NBA ,AM、BN相交于点C (3)ABC就是所求作的三角形,建构活动,基本事实:两角及其夹边分别相等的两个三角形全等,数学概念,数学活动,例1 图中有几对全等三角形?你能找出它们。

10、,苏科数学,1.3 探索三角形全等的条件(6),问题情境,1小明用长度分别为5、6、7的3根木棒首尾顺次相接搭出了ABC,试问:小明应选用怎样大小的3根木棒能搭出MPN与ABC全等?,1已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合,建构活动,通过以上的操作你发现了什么?,2教师出示三角形、四边形木架,让学生动手拉动木架的两边教师提出问题: (1)演示实验说明了什么? (2)你能举出生活中利用三角形稳定性的例子吗?,建构活动,1.三边对应相等的两个三角形全等。

11、,苏科数学,1.3 探索三角形全等的条件(5),问题情境,1回顾三角形全等的三个判定方法,2如图,AD平分BAC,要使ABDACD, (1)根据“SAS”需添加条件_; (2)根据“ASA”需添加条件_; (3)根据“AAS”需添加条件_,1如图,AB,12,EAEB, 你能证明ACBD吗?,建构活动,2如图,点C、F在AD上,且AFDC,BE, AD,你能证明ABDE吗?,建构活动,1. 为了利用“ASA”或“AAS”定理判定两个三角形全等,有时需要先把已知中的某个条件,转变为判定三角形全等的直接条件,数学概念,2证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得。

12、第 1 页,共 19 页三角形全等的判定测试题(时间:60 分钟)题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于O 点,已知 ,现添加以下的哪个条件仍不能判定= ()A. =B. =C. =D. =2. 如图,直线 L 上有三个正方形 a,b,c,若 a,c 的面积分别为 1 和 9,则 b 的面积为 ( )A. 8 B. 9 C. 10 D. 113. 如图,点 B、F、C、E 在一条直线上, , ,那么添加下列一个条/件后,仍无法判定 的是 ( )A. B. C. D. = = = =4. 如图,已知 , ,从下列条件:1=2 =中添加一=个条。

13、第 1 页,共 11 页直角三角形全等的判定(45 分钟小测验)题号 一 二 三 四 总分得分一、选择题(本大题共 6 小题,共 18.0 分)1. 如图, 中, , 于 D, 于= E,BD 和 CE 交于 O,AO 的延长线交 BC 于 F,则图中全等的直角三角形有 ( )A. 3 对B. 4 对C. 5 对D. 6 对2. 如图,若要用“HL”证明 ,则还需补充条件 ( )A. =B. 或=C. 且=D. 以上都不正确3. 下列说法中,正确的个数是 ( )斜边和一直角边对应相等的两个直角三角形全等;有两边和它们的对应夹角相等的两个直角三角形全等;一锐角和斜边对应相等的两个直角三角形全等;两个锐角对应。

14、12.2 三角形全等的判定基础闯关全练拓展训练1.如图(1)所示,A,E,F,C 在一条直线上,AE=CF,过 E,F 分别作 DEAC,BFAC,若 AB=CD.(1)求证:GF=GE;(2)若将DEC 的边 EC 沿 AC 方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.2.如图,RtABC 中,AC=7 cm,BC=3 cm,CD 为斜边 AB 上的高,点 E 从点 B 出发沿直线 BC 以2 cm/s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F.(1)求证:A=BCD;(2)点 E 运动多长时间时,CF=AB?并说明理由.能力提升全练拓展训练1.已知一等腰三角形的腰长为 5,底边长为 4,底角为 .满足下列条件的三角形与已知三。

15、第十一章 三角形,12.2 三角形全等的判定(第3课时),第十二章 全等三角形,作业布置,评价,小结,巩固练习,讲授新课,复习,教学过程,有三边分别相等的 两个三角形全等.,边边边:,有两边和它们的夹角分别相等的两个三角形全等.,边角边:,新课讲授,(一)类比联想,结合实例发现,创设情景,实例引入,画图验证,总结出结论,对应练习,例题讲解,(二)得出结论,(三)应用举例,猜想,一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具吗?能恢复原来三角形 的原貌吗?,C,B,E,A,D,先任意画出一个ABC, 再画一个ABC,使。

16、第2课时,12.2 三角形全等的判定,1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获 得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题,还记得作一个角等于已知角的方法吗?,做一做:先任意画出ABC.再画一个ABC, 使AB=AB, AC=AC,A=A.(即有两边和它们 的夹角相等).把画好的ABC剪下,放到ABC上, 它们全等吗?,画法:,2. 在射线AM上截取AB=AB,3. 在射线AN上截取AC=AC,1. 画MAN=A,4. 连接BC,ABC就是所求的三角形.,三角形全等判定二: 两边和它们的夹。

17、第4课时,12.2 三角形全等的判定,1经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程; 2.掌握直角三角形全等的条件,并能运用其解决一些实际 问题; 3.在探索直角三角形全等条件及其运用的过程中,能够进 行有条理的思考并进行简单的推理,我们已经学过判定全等三角形的方法有哪些?,1、边边边(SSS),3、角边角(ASA),4、角角边(AAS),2、边角边(SAS),如图,AB BE于B,DEBE于E,,(1)若 A= D,AB=DE, 则 ABC与 DEF (填“全等”或“不全等”)根据 (用简写法).,全等,ASA,(2)若 A= D,BC=EF,则 ABC与 DEF (填 。

18、第1课时,12.2 三角形全等的判定,1会用“边边边”判定三角形全等 2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,AB=DE BC=EF CA=FD A=D B=E C=F,1、什么叫全等三角形?,能够重合的两个三角形叫全等三角形.,2、全等三角形有什么性质?,问题一:根据上面的结论,两个三角形全等,它们的三个角、三条边分别对应相等,那么反过来,如果两个三角形中上述六个元素对应相等,是否一定全等?,问题二:两个三角形全等,是否一定需要六个条件呢?如果只满足上述一部分条件,是否我们也能说明他们全等?,任意画ABC,使AB=3cm。

19、直角三角形全等的条件(HL),回顾:,AB AC BC A B ACB,DE DF EF D DEFF,回 顾 与 练 习,1、除定义外判定两个三角形全等方法:, , , 。,SSS,ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?,-,-,=,=,学习目标: 1、掌握直角三角形全等的判定方法斜边直角边; 2、熟练运用“HL”定理证明直角三角形全等; 3、能够运用“HL”定理解决有关问题.,做一做,用尺规作图法,做一。

20、12.2 三角形全等的判定,第一课时,第二课时,人教版 数学 八年级 上册,第三课时,第四课时,第一课时,“边边边”定理,为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?,3. 掌握用尺规作一个角等于已知角的作图法,1. 探索三角形全等条件,明确探索方向和过程.,2. 掌握“边边边”。

【12.2三角形全等的判定】相关PPT文档
2020广西中考数学一轮复习课件:第18讲 三角形的有关概念和性质、全等三角形
1.3探索三角形全等的条件(7)课件
1.3探索三角形全等的条件(8)课件
1.3探索三角形全等的条件(2)课件
1.3探索三角形全等的条件(1)课件
1.3探索三角形全等的条件(4)课件
1.3探索三角形全等的条件(3)课件
1.3探索三角形全等的条件(6)课件
1.3探索三角形全等的条件(5)课件
人教版八年级上数学第十二章12.2三角形全等的判定(31张)
人教版数学八年级上12.2三角形全等的判定(第2课时)课件
人教版数学八年级上12.2三角形全等的判定(第4课时)课件
人教版数学八年级上12.2三角形全等的判定(第1课时)课件
三角形全等的判定HL判定ppt课件
12.2 三角形全等的判定ppt课件(共126张ppt)
【12.2三角形全等的判定】相关DOC文档
1.3 直角三角形全等的判定 同步教案(湘教版八年级数学下册)
2018年秋人教版八年级上册《12.2三角形全等的判定》测试题含答案
人教版八年级上册《12.2直角三角形全等的判定》同步测试含答案
人教版八年级上册数学《12.2三角形全等的判定》同步测试(含答案解析)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开