一元二次方程的解 法知识与技能 1.使学生初步掌握用直接开平方法解一元二次方程.过程与方法 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题教学情感态度与价值观提出问题,列出缺一次项的一元二次方程 ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=
14.4一次函数同步教案北京课改版八年级下Tag内容描述:
1、一元二次方程的解 法知识与技能 1.使学生初步掌握用直接开平方法解一元二次方程.过程与方法 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题教学情感态度与价值观提出问题,列出缺一次项的一元二次方程 ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0 型的一元二次方程教学重点:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想教学难点:通过根据平方根的意义解形如 x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程教学方法:启发引导、讲练结合教学用。
2、一元二次方程知识与技能1.使学生了 解一元二次方程的意义;2.会判断一个方程是否是一元二次方程;3.熟练掌握一元二次方程的一般形式,会准确确定一元二次方程各项的系数.过程与方法 1. 通过教学,培养学生观察、比较、归纳及逻辑思维的能力,培养学生发现问题,提出问题,解 决问题的能力;2.经历抽象一元二次方程的过程,使学生感到事物由具体到抽象,由特殊到一般的发展规律,进一步体会出方程是刻画现实世界中数量关系的一个有效数学模型.教学过程情感态度与价值观1.培养学生认识数学来源于实践又反过来作用于实践的辩证唯物主义观点,。
3、一次函数的图象一、夯实基础1、一次函数的图象经过点(2,1)和(1,5),则这个一次函数( )A.y=4x+9 B. y=4x-9 C. y=-4x+9 D. y=-4x-92、已知点 P的横坐 标与纵坐标之和为 1,且这点在直线 y=x+3上,则该点是( )A.(-7,8) B. (-5,6) C. (-4,5) D. (-1,2) 3、已知一次函数的图象过点 与 ,则该函数的图象与 轴交点的坐标为_ 35, 49, y4、一次函数 y=2x+b 与 x轴交于(4,0) ,则它与 y轴的交点为_二、能力提升 5、若点 A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则 m的值是( )A.8 B.4 C.- 6 D.-8 6、某航空公司规定,旅客乘机所携带行李的质量 。
4、一次函数的性质一、夯实基础1、一次函数 32xy的大致图像为( )A B C D2、在平面直角坐标系中,函数 的图象经过( )1yxA一、 二、三象限 B二、三、四象限C一、三、四象限 D一、二、四象限3、已知一次函数 y=2x+1,则 随 的增大而_ _(填“增大”或“减小” ) yx4、已知一次函数 y=-3x-3,则 随 的增大而_ _(填“增大”或“减小” ) 二、能力提升5、直线 y=2x-4 与 y 轴交点坐标为_,与 x 轴交点坐标为_, y 随 x 增大而_6、对于函数 y= x-4,函数值 y 随 x 的增大而_147、在直线 y=-5x+1 上有两点 A(x1,y1)和 B(x2,y2),若 x1y2。
5、一次函数的应用一、夯实基础1、如图所示,反映了某公司产品的销售收入与销售量的关 系,反映了该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时的销售量是( ) A小于 4 吨 B大于 4 吨 C等于 4 吨 D大于或者等于 4 吨 2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲 商场累计购买满一定数额 a 元后,再购买的商品按原价的 90%收费;在乙商场累计购买 50元商品后,再购买的商品按原价的 95%收费若累计购物 x 元,当 xa 时,在甲商场需 付钱数yA=09x+10,当 x50 时,在乙商。
6、一次函数的图象一、教学目标1.通过实践了解一次函数的图象是一条直线.2.会 画出正比例函数、一次函数的图象.3.掌握用待定系数法求函数的表达式.二、课时安排:1 课时.三、教学重点:会画出正比例函数、一次函数的图象.四、教学难点:用待定系数法求函数的表达式.五、教学过程(一)导入新课 我们知道,y=2x 的图象是一 条直线,那么任何一个直线一次函数的图象也是一条吗?下面我们学习一次函数的图象.(二)讲授新课实践:1、在平面直角坐标系中分别作出下列函数的图象:(1)y=-x; (2)y=-2x+3; (3)y=2x-3.2、观察所得的图象,你认为一次。
7、一次函数的应用一、教 学目标1.巩固一次函数的性质.2.灵活运用变 量关系解决相关实际问题.3.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、课时安排:1 课时.三、教学重点:运用变量关系解决相关实际问题.四、教学难点:把各种数学模型通 过函数统一起来使用,提高解决实际问题的能力.五、教学过程(一)导入新课 生活中很多问题都可以归结为一次函数的问题,并可以用一次函数的知识加以解决.下面我们学习一次函数的应用.(二)讲授新课例 1、某生产资料门市部出售化肥,每袋售价 80 元.为了促进销 售,规定了优。
8、一次函数的性质一、教学目标1.通过作图归纳一次函数图象的特征.2.掌握一次函数的性质.3.能灵活运用一次函数的性质解决实际问题.二、课时安排:1 课时.三、教学重点:一次函数的性质.四、教学难点:灵活运用一次函数的性质解决实际问题.五、教学过程(一)导入新课 观察前面练习的第 1(1)题的 3 个函数的图象,你认为函数 y=kx+b 中,b 值得变化对图象的位置有什么影响?下面我们学习一次函数的性质.(二)讲授新课2、分别观察前面练习第 1(2)题和(3)题中的 3 个函数的图象,你认为一次函数 y=kx+b 中,k 值得变化对图象的位置有什么影响?。
9、一次函数一、夯实基础1、下列说法不正确的是( ) A.一次函不一定是正比例函数 B.不是一次函数就一定不 是正比例函数C.正比例函数是特殊的 一次函数 D.不是正比例函数就 一定不是一次函数 2、下 列函数中,正比例函数是 ( ) Ay= 8x By=8x+1 Cy=8x2+1 Dy=- x83、一般地,形如 _的函数叫做正比例函数.4、函数 y=(m-2)x+5-m 是一次函数,则 m 满足的条件是_,若此函数是正比例函数,则 m的值为_.二、能力提升5、张老师带领 x 名学生到某动物园参观,已知成人票每张 10 元,学生票每张 5 元,设门票的总费用为 y 元,则 y= _ 6、若函数 是正比。
10、一次函数一、教学目标1、了解一次函数的概念.2、了解正比例函数的概念. 3、能判断一个函数是否是一次函数或正比例函数.4、能根据题意写出一次函数的解析式并求出自变量的取值范围.二、课时安排:1 课时.三、 教学重点:一次函数及正比例函数的概念.四、教学难点:能根据题意写出一次函数的解析式并求出自变量的取值范围.五、教学过程(一)导入新课 问题:某登山队大本营所在地的气温为 5海拔每升高 1 km 气温下降 6,登山队员由大本营向上登高 x km 时,他们所在位置的气温是 y试用解析式表示 y 与 x 的关系得到的函数关系式是什么函数?。