欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

17.1.2勾股定理课件

17.2 勾股定理的逆定理勾股定理的逆定理 第十七章第十七章 勾股定理勾股定理 新课导入 提问 这个命题的条件和结论分别是什么?这个命题的条件和结论分别是什么? 命题命题1 如果直角三角形两直角边长分别为如果直角三角形两直角边长分别为a, b,斜边长为,斜边长为c,那么,那么a2+b2=c2 条件:

17.1.2勾股定理课件Tag内容描述:

1、17.2 勾股定理的逆定理勾股定理的逆定理 第十七章第十七章 勾股定理勾股定理 新课导入 提问 这个命题的条件和结论分别是什么?这个命题的条件和结论分别是什么? 命题命题1 如果直角三角形两直角边长分别为如果直角三角形两直角边长分别为a, b,斜边长为,斜边长为c,那么,那么a2+b2=c2 条件:直角三角形的两直角边长为条件:直角三角形的两直角边长为a,b,斜,斜 边长为边长为c .结论:。

2、16.3勾股定理的勾股定理的 应用应用 【知识与技能】掌握勾股定理在现实生活中的应【知识与技能】掌握勾股定理在现实生活中的应 用。用。 【过程与方法】经历把实际问题转化成数学问题,【过程与方法】经历把实际问题转化成数学问题, 利用勾股定理解决的过程。利用勾股定理解决的过程。 【情感、态度与价值观】培养学生良好的学习习【情感、态度与价值观】培养学生良好的学习习 惯、合作交流的学习方法、以及学数。

3、16.3 勾股定理的应用 校园里有一块三角形空地校园里有一块三角形空地, ,现准备在这块空现准备在这块空 地上种植草皮以美化环境地上种植草皮以美化环境, ,已经测量出它的已经测量出它的 三边长分别是三边长分别是13,14,1513,14,15米米, ,若这种草皮每平若这种草皮每平 方米售价方米售价120120元元, ,则购买这种草皮至少需要则购买这种草皮至少需要 支出多少元支出多少元? ? 1。

4、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理的逆定理,1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点) 2.能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.(难点),导入新课,问题1 勾股定理的内容是什么?,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,b,c,a,问题2 求以线段a、b为直角边的直角三角形的斜边c的长:, a3,b4; a2.5,b6; a4,b7.5.,c=5,c=6.5,c=8.5,复习引入,思考 以前我们已经学过了通过。

5、勾股定理的应用勾股定理的应用 例例1:如图所示,为了测得湖两岸点:如图所示,为了测得湖两岸点A和和 点点C间的距离,一个观测者在点间的距离,一个观测者在点B设立了设立了 一根标杆,使一根标杆,使ACB=90 测得测得AB=200m,BC=160m根据测量结果,根据测量结果, 求点求点A,C间的距离间的距离 A C B 这个生活中的问题对应的数学问题是什么?这个生活中的问题对应的数学问题是什么? 。

6、1.1 探索勾股定理,第一章 勾股定理,第1课时 认识勾股定理,八年级数学北师版,情境引入,1.了解勾股定理的内容,理解并掌握直角三角形三边之间的数量关系(重点) 2.能够运用勾股定理进行简单的计算(难点),学习目标,导入新课,如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.,情境引入,(图中每一格代表一平方厘米),(1)正方形P的面积是 平方厘米;,(2)正方形Q的面积是 平方厘米;,(3)正方形R的面积是 平方厘米.,1,2,1,SP+SQ=SR,R,Q,P,AC2+BC2=AB2,等腰直角三角形ABC三边长度之间存在什么。

7、1.1 探索勾股定理,第一章 勾股定理,第2课时 验证勾股定理,八年级数学北师版,1.学会用几种方法验证勾股定理(重点) 2.能够运用勾股定理解决简单问题(重点,难点),学习目标,导入新课,观察与思考,活动:请你利用自己准备的四个全等的直角三角形拼出以斜边为边长的正方形,有不同的拼法吗?,讲授新课,据不完全统计,验证的方法有400多种,你有自己的方法吗?,问题:上节课我们认识了勾股定理,你还记得它的内容吗?那么如何验证勾股定理呢 ?,方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了。

8、邮票赏邮票赏 析析 这是这是19551955年希腊曾经发行的年希腊曾经发行的 纪念一位数学家的邮票。纪念一位数学家的邮票。 P P QQ C C R R 如图,小方格的边长为如图,小方格的边长为1. 1. (1)(1)你能求出正方形你能求出正方形R的面积吗?的面积吗? 用了“补”的方法用了“补”的方法 P P QQ C C R R 用了“割”的方法用了“割”的方法 Q Q P P QQ R R。

9、,苏科数学,3.3 勾股定理的简单应用,苏科数学,3.3 勾股定理的简单应用,从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形,3.3 勾股定理的简单应用,已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长,3.3 勾股定理的简单应用,探索活动,(1)在上面“斜拉桥”问题中,若AB=12,BC=5,求拉索AC的长度?,(2)小组合作:赋予一些线段的具体长度,求第三边,(3)交流:从上面的小组合作中,你碰到了什么困难?,(4)反思:从上面所获得的信息中,你对解决这类实际问题有一定的认识吗?,例1九章算术中的“折竹”问题:“今有竹高一丈。

10、1.3 勾股定理的应用,第一章 勾股定理,八年级数学北师版,情境引入,学习目标,1.学会运用勾股定理求立体图形中两点之间的最短距离(重点) 2.能够运用勾股定理解决实际生活中的问题. (重点,难点),在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?,C,B,A,AC+CBAB(两点之间线段最短),导入新课,情境引入,思考:在立体图形中,怎么寻找最短线路呢?,讲授新课,问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想。

11、勾股定理复习课,勾股定理:如果直角三角形的两直角边分 别为a,b,斜边为c,则有,大正方形的面积可以表示为 ,又可以表示为:,c,(b-a)+1/2ab4,a2 + b2 = c2,A,B,C,A的面积+B的面积=C的面积,一、分类思想,2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC,25,或7,10,17,8,17,10,8,规律,分类思想,1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。,2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。,二、方程思想,、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后。

12、,苏科数学 八年级(上册),3.1 勾股定理(2),南京师大附中江宁分校 姜红,我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦图1称为“弦图”, 最早是由三国时期的数学家赵爽在周髀算经中给出的它标志着中国古代的数学成就. 它是用4张全等的直角三角形纸片拼成一个以弦长c为边长的正方形.你能用不同方法表示大正方形的面积,验证勾股定理吗?,情境设置,剪四个完全相同的直角三角形,然后将它们拼成如图2所示的图形你能仿照上面的方法,利用此图验证勾股定理吗?,活动1,活动2,如图3,把火柴盒放倒,在这个过程中,也能验。

13、第十七章 勾股定理,17.1 勾股定理,知识点 勾股定理,1955年希腊发行了一张邮票,图案是由三个棋盘排列而成的.这张邮票是纪念2500年前希腊一个学术和宗教团体毕达哥拉斯学派,它的成立以及在文化上的黄页,我们通过数格子的方法很容易发现直角三角形三边之间的关系.,知识点 勾股定理的验证,在九章算术中记载了三国时代魏国的数学家刘徽青朱出入图.,此图单靠移动几个图形就可以直观地验证勾股定理,被誉为“无字的证明”.,知识点 勾股定理在实际问题中的应用,少数人为了避开草地的拐角走“捷径”,他们仅仅就是为了少走几步路(图中4 m),在草地内走。

14、,苏科数学 八年级(上册),3.1 勾股定理(1),南京师大附中江宁分校 姜红,下面两幅图中,左图是1955年希腊发行的一枚纪念邮票,右图是2002年北京第24届国际数学家大会会徽,这两幅图案都是根据一个著名的数学定理设计的 观察左图这张邮票,图案中央的是一个直角三角形,以它的三边为一边分别向形外作正方形,数数图案中各个正方形内小方格的个数,你有什么发现?,情境设置,我们把前面带正方形格子的这张邮票抽象成观察图3-1,若将小方格的面积看作1,则以BC为一边的正方形面积是9,以AC为一边的正方形面积为16,以AB为边长的正方形的面积如。

15、勾股定理的逆定理,A,B,C,D,小明想要检测雕塑底座正面的 AD 边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.,你能帮助小明解决这个问题吗?,想方设法,古埃及人曾用下面的方法得到直角:如图所示,他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第一个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处。,我们大家来试试,每组同学取一段12cm长的线,请同学量出4cm,用大头钉固定好,把剩下的线分成5cm和3cm两段拉紧固定,用量角器量出最大角的度数。,下面的三。

16、,苏科数学,初中数学八年级 上册 (苏科版),3.2 勾股定理的逆定理,南京师范大学附属中学江宁分校 吴寿根,我们知道,直角三角形两直角边的平方和等于斜边的平方 这个命题的逆命题是什么呢? 它是真命题吗?,情境设置,如图, 在ABC中,在ABC中, ,ABC是直角三角形吗?如何证明你的结论? 分析:为了证明ABC是直角三角形可以给它一个参照的对象,即构建一个直角三角形,考虑到条件中有 ,我们相应的把构造的直角三角形的直角边设置为a,b(如右图),再利用勾股定理计算出其斜边AB =c,这样就可以用“SSS”来证明两三角形全等即可,活动1,思考。

17、第2课时 勾股定理的应用,新课导入,这节课我们就来学习用勾股定理解决实际问题.,学习目标,学习重、难点,1.能应用勾股定理计算直角三角形的边长. 2.能应用勾股定理解决简单的实际问题.,重点:运用勾股定理求直角三角形的边长. 难点:从实际问题中构造直角三角形解决生产、生活中的有关问题.,推进新课,知识点 1,用勾股定理解决问题,例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?,1.木板能横着或竖着从门框通过吗?,2.这个门框能通过的最大长度是多少?,不能,3.怎样判定这块木板能否通过木框?,求。

18、17.1.2 勾股定理的应用1如图17-1-2-1小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为_m2现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄下图是昌平滨河公园的一角,有人为了抄近道而避开横平竖直的路的拐角ABC,而走“捷径AC”,于是在草坪内走出了一条不该有的“路AC”已知AB=40米,BC=30米,他们踩坏了_米的草坪,只为少走_米的路32017年9月3日21时30分,台风“玛娃”在广东汕尾陆丰市登陆,给人们的生活环境造成极大的破坏台。

19、1/1117.1 勾股定理课时 2 勾股定理的实际应用 基础训练知识点 勾股定理的实际应用1.(2017 广东深圳锦华实验学校期中)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1m,当它把绳子的下端拉开 4m 后,发现下端刚好接触地面,则旗杆的高为 ( )A.7m B.7.5m C.8m D.9m2.(2017 陕西西安铁一中月考改编)如图,已知圆柱底面的周长为 4dm,圆柱的高为 2dm,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则这圈金属丝的周长最小为 ( )A.4 dm B.2 dm22C.2 dm D.4 dm553.(2018 湖南湘潭中考)九章算术是我国古代最重要的数学著作之一,在“勾股”。

20、,17.1 勾股定理,实数,数轴上的点,一一对应,说出下列数轴上各字母所表示的实数:,点C表示,点D表示,点B表示,点A表示,我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出 的点吗?,0,1,2,3,4,步骤:,l,A,B,C,1、在数轴上找到点A,使OA=3;,2、作直线lOA,在l上取一点B,使AB=2;,3,以原点O为圆心,以OB为半径作弧,弧与数轴交于C点,则点C即为表示 的点。,探究3:数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示 的点吗?,你能在数轴上画出表示 的点和 的点吗?,点C即为表示 的点,数学海螺图:,利用勾股定。

【17.1.2勾股定理课件】相关PPT文档
17.2勾股定理的逆定理ppt课件(2021年人教版八年级下)
冀教版八上16.3《勾股定理的应用》ppt课件2
冀教版八上16.3《勾股定理的应用》ppt课件1
2019年春人教版八年级下数学《17.2.1勾股定理的逆定理》课件
冀教版八上16.3《勾股定理的应用》ppt课件
1.1 第1课时《认识勾股定理》课件
1.1 第2课时《验证勾股定理》课件
2021年八上16.1《勾股定理》ppt课件2
3.3勾股定理的简单应用ppt课件
1.3《勾股定理的应用》课件
17勾股定理复习课件
3.1勾股定理(2)课件
17.1勾股定理ppt课件
3.1勾股定理(1)课件
17.2勾股定理的逆定理课件1
3.2勾股定理的逆定理ppt课件
2019-2020人教版八年级数学下册17.1.2勾股定理第二课时课件共47张
17.1.2勾股定理课件
【17.1.2勾股定理课件】相关DOC文档
2020年人教版数学八年级下册17.1.2勾股定理的应用同步练习(解析版)
人教版数学八年级下册17.1.2《勾股定理的实际应用》同步训练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开