欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.1.1函数的概念和图象二课时对点练含答案

第第 2 2 课时课时 函数函数 y yA Asinsin xx 的图象的图象 二二 课时对点练课时对点练 1将函数 fxsin x 的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移3个单位长度,得到函数 gx的图象,则函,1.3.2余弦函数、正切函数的图象与性质(二) 一、选择题

2.1.1函数的概念和图象二课时对点练含答案Tag内容描述:

1、第第 2 2 课时课时 函数函数 y yA Asinsin xx 的图象的图象 二二 课时对点练课时对点练 1将函数 fxsin x 的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移3个单位长度,得到函数 gx的图象,则函。

2、1.3.2余弦函数、正切函数的图象与性质(二)一、选择题1.函数f(x)2tan(x)是()A.奇函数B.偶函数C.奇函数,也是偶函数D.非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数.2.下列各点中,不是函数ytan图象的对称中心的是()A. B.C. D.答案C解析令2x,kZ,得x(kZ).令k0,得x;令k1,得x;令k2,得x.故选C.3.满足tan A1的三角形的内角A的取值范围是()A. B.C. D.答案D解析因为A为三角形的内角,所以01,结合正切曲线得A.4.已知函数f(x)tan x (0)图象的相邻两支截直线y所得的线段长为,则。

3、1.3.1正弦函数的图象与性质(二)一、选择题1.下列函数中,周期为2的是()A.ysin B.ysin 2xC.y D.y|sin x|答案C解析画出y的图象(图略),易知其周期为2.2.下列函数中,不是周期函数的是()A.ysin x1 B.ysin2xC.y|sin x| D.ysin |x|答案D解析画出ysin |x|的图象(图略),易知D的图象不具有周期性.3.函数f(x)是()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数答案B解析函数f(x)的定义域为(,0)(0,),关于原点对称,且f(x)f(x),故f(x)为偶函数.4.函数f(x)sin的最小正周期为,其中0,则等于()A.5 B.10 C.15 D.20答案B5.已知aR,函数f(x。

4、2.1函数的概念2.1.1函数的概念和图象(一)一、选择题1下列对应是从集合A到集合B的函数的是()AAR,BxR|x0,f:xBAN,BN*,f:x|x1|CAxR|x0,BR,f:xx2DAR,BxR|x0,f:x答案C解析A中,当x0时,无意义;B中,当x1时,输出值为0,而集合B中没有0;C正确;D不正确2设Mx|0x2,Ny|0y2,给出下列四个图形,其中能表示从集合M到集合N的函数关系的是()答案B解析A中,x2时,在N中无元素与之对应,不满足任意性,所以A不符合B中,同时满足任意性与唯一性,所以B符合C中,x2时,对应元素y3N,不满足任意性,所以不符合D中,x1时,在N中有两个元素与之。

5、2.1.1函数的概念和图象(二)一、选择题1已知函数yf(x)的对应法则如下表,函数yg(x)的图象是如图所示的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2)的值为()x123f(x)230A3 B2 C1 D0答案B解析由函数g(x)的图象知,g(2)1,则f(g(2)f(1)2.2“龟兔赛跑”进述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点用s1,s2分别表示乌龟和兔子所行的路程(t为时间),则下图与故事情节相吻合的是()答案B解析A中是同时到达;B中乌龟到达时,兔子还没。

【2.1.1函数的概念和图象二课时对点练含答案】相关DOC文档
§5.6(第2课时)函数y=Asin(ωx+φ)的图象(二)课时对点练(含答案)
1.3.2 余弦函数、正切函数的图象与性质(二)课时对点练(含答案)
1.3.1 正弦函数的图象与性质(二)课时对点练(含答案)
2.1.1函数的概念和图象(一)课时对点练(含答案)
2.1.1函数的概念和图象(二)课时对点练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开