1.3.2 杨辉三角杨辉三角 学习目标 1.了解杨辉三角, 会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2. 理解二项式系数的性质并灵活运用 知识点 “杨辉三角”与二项式系数的性质 (ab)n的展开式的二项式系数,当 n 取正整数时可以表示成如下形式: 思考 1 从上面的表示形式可以直观地
2.1.1 合情推理 学案人教B版高中数学选修2-2Tag内容描述:
1、1.3.2 杨辉三角杨辉三角 学习目标 1.了解杨辉三角, 会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2. 理解二项式系数的性质并灵活运用 知识点 “杨辉三角”与二项式系数的性质 (ab)n的展开式的二项式系数,当 n 取正整数时可以表示成如下形式: 思考 1 从上面的表示形式可以直观地看出什么规律? 答案 在同一行中, 每行两端都是 1, 与这两个 1 等距离的项的系数相等; 在。
2、1.1基本计数原理(二) 学习目标巩固分类加法计数原理和分步乘法计数原理,并能灵活应用这两个计数原理解决实际问题 知识点一分类加法计数原理与分步乘法计数原理 分类加法计数原理 分步乘法计数原理 任务 做一件事 步骤 完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法 完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二。
3、2.1.3 超几何分布超几何分布 学习目标 1.进一步理解离散型随机变量的分布列的求法、作用.2.掌握超几何分布的特点, 并能简单的应用 知识点 超几何分布 已知在 8 件产品中有 3 件次品,现从这 8 件产品中任取 2 件,用 X 表示取得的次品数 思考 1 X 可能取哪些值? 答案 X0,1,2. 思考 2 X1 表示的试验结果是什么?求 P(X1)的值 答案 任取 2 件产品中恰有 1 。
4、第二章 推理与证明,习题课 数学归纳法,学习目标 1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题的方法. 2.掌握证明nk1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 归纳法,归纳法是一种 的推理方法,分 和_ 两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明.,由特殊到一般,完全归纳法,不完全归,纳法,知识点二 数学归纳法,(1)应用范围:作为一种证明方法,用于证明一些与 有关的。
5、 2.2 条件概率与事件的独立性条件概率与事件的独立性 2.2.1 条件概率条件概率 学习目标 1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一 些简单的实际问题 知识点一 条件概率 100 件产品中有 93 件产品的长度合格,90 件产品的质量合格,85 件产品的长度、质量都合 格 令 A产品的长度合格,B产品的质量合格,AB产品的长度、质量都合格 思考 1 试求。
6、 3.2 回归分析回归分析 学习目标 1.会建立线性回归模型分析两个变量间的相关关系.2.能通过相关系数判断两个 变量间的线性相关程度 知识点一 回归分析及回归直线方程 思考 1 什么叫回归分析? 答案 回归分析是对具有相关关系的两个变量进行统计分析的一种方法 思考 2 回归分析中,利用回归直线方程求出的函数值一定是真实值吗? 答案 不一定是真实值,利用回归直线方程求的值,在很多时候是个预测值 。
7、 2.4 正态分布正态分布 学习目标 1.通过实际问题, 了解什么是正态曲线和正态分布.2.认识正态曲线的特点及曲线 所表示的意义.3.会根据正态曲线的性质求随机变量 X 在某一范围内的概率 知识点 正态分布 1概率密度曲线 (1)特点:曲线位于横轴的上方,它与横轴一起所围成的面积为 1. (2)意义:概率密度曲线反映变化规律所起的作用与离散型随机变量分布列的作用是相同的 2正态变量的概率密度函。
8、第二章 推理与证明,章末复习课,学习目标 1.整合本章知识要点. 2.进一步理解合情推理与演绎推理的概念、思维形式、应用等. 3.进一步熟练掌握直接证明与间接证明. 4.理解数学归纳法,并会用数学归纳法证明问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 合情推理,(1)归纳推理:由 到 、由 到 的推理. (2)类比推理:由 到 的推理. (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.,部分,整体,个别,一般,特殊,特殊,知识点二。
9、2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学习目标1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上 思考2在一块地里种10棵树苗,成活的棵数为x,则x可取哪些数字? 答案x0,1,2,3,1。
10、2.2 直接证明与间接证明直接证明与间接证明 2.2.1 综合法与分析法综合法与分析法 学习目标 1.理解综合法、分析法的意义,掌握综合法、分析法的思维特点.2.会用综合法、 分析法解决问题 知识点一 直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实 性常用的直接证明方法有综合法与分析法 知识点二 综合法 阅读下列证明过程,已知实数 x,y 满足 xy1。
11、2.2.2 反证法反证法 学习目标 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证 法证明数学问题 知识点 反证法 王戎小时候,爱和小朋友在路上玩耍一天,他们发现路边的一棵树上结满了李子,小朋友 一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问 王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而 这树上却结。
12、第 1 课时 归纳推理课后训练案巩固提升1.观察下列各式:1=1 2,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,可以得出的一般性结论是( )A.n+(n+1)+(n+2)+(3n-2)=n2B.n+(n+1)+(n+2)+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+(3n-1)=n2D.n+(n+1)+(n+2)+(3n-1)=(2n-1)2解析: 观察各等式的构成规律可以发现 ,各等式的左边是 2n-1(nN *)项的和,其首项为 n,右边是项数的平方,故第 n 个等式首项为 n,共有 2n-1 项,右边是(2n-1) 2,即 n+(n+1)+(n+2)+(3n-2)=(2n-1)2.答案: B2.已知不等式 1+ ,1+ ,1+ ,均成立,照此规律,第五个不等式应为 1+ ( )A. B. C. D.解析: 观。
13、第第 3 课时课时 用数学归纳法证明整除问题用数学归纳法证明整除问题、几何问题几何问题 学习目标 1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明整除问题、几 何问题等数学命题的方法.2.掌握证明 nk1 成立的常见变形技巧: 提公因式、 添项、 拆项、 合并项、配方等 知识点一 归纳法 归纳法是一种由特殊到一般的推理方法, 分完全归纳法和不完全归纳法两种, 而不完全归纳 法得出的结。
14、第 2 课时 类比推理课后训练案巩固提升1.给出下列三个类比结论: 类比 axay=ax+y,则有 axay=ax-y; 类比 loga(xy)=logax+logay,则有sin(+)=sin +sin ; 类比( a+b)2=a2+2ab+b2,则有( a+b)2=a2+2ab+b2.其中正确结论的个数是( )A.0 B.1 C.2 D.3解析: 根据指数幂的运算性质知 正确; 根据正弦函数的运算性质知 错误;根据向量的运算性质知 正确,因此正确结论有 2 个.答案: C2.在等差数列a n中,有结论 ,类比该结论 ,在等比数列b n中,可有结论( )A.B.C.D.解析: 由于 b1b8=b2b7=b3b6=b4b5,所以 ,故选 D.答案: D3.设ABC 的三边长分别为 a,b,c,ABC 的面。
15、2.1.2演绎推理 学习目标1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理 知识点一演绎推理的含义 思考分析下面几个推理,找出它们的共同点 (1)所有的金属都能导电,铀是金属,所以铀能够导电; (2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除 答案都是由真命题,按照一定的逻辑规则推出正确的结论 梳理演绎推理的含义 (1)定义:由概。
16、2.1.1 合情推理,第二章 2.1 合情推理与演绎推理,学习目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理. 2.了解合情推理在数学发现中的作用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 归纳推理,思考,答案,答案 属于归纳推理.符合归纳推理的定义特征,即由部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.,(1)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电. (2)统计学中,从总体中抽取样本,然后用样本估计总体. 以上属于什么推理?,(1)定义:由某类事物的 具有某些特征,推出。
17、21 合情推理与演绎推理合情推理与演绎推理 211 合情推理合情推理 第第 1 课时课时 归纳推理归纳推理 学习目标 1.了解归纳推理的含义,能利用归纳进行简单的推理.2.了解归纳推理在数学发 现中的作用 知识点一 推理 1推理的定义 从一个或几个已知命题得出另一个新命题的思维过程称为推理 2推理的组成 任何推理都包含前提和结论两个部分, 前提是推理所依据的命题, 它告诉我们已知的知识是 什么;。
18、21 合情推理与演绎推理21.1 合情推理1.了解合情推理的含义,能利用归纳和类比等进行简单的推理 2.了解合情推理在数学发现中的作用1归纳推理和类比推理归纳推理 类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比 )特征 归纳推理是由部分到整体、由个别到一般的推理 类比推理是由特殊到特殊的推理2.合情推理含义。
19、第第 2 课时课时 类比推理类比推理 学习目标 1.了解类比推理的含义、特征,能利用类比进行简单的推理.2.能正确区别归纳 推理与类比推理的不同点,了解合情推理的合理性 知识点一 类比推理 思考 科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳公 转、绕轴自转的行星;(2)有大气层,在一年中也有季节更替;(3)火星上大部分时间的温度 适合地球上某些已知生物的生存等由此,。
20、2.1 合情推理与演绎推理合情推理与演绎推理 2.1.1 合情推理合情推理 学习目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理 在数学发现中的作用 知识点一 推理 1推理的概念与分类 (1)根据一个或几个已知事实(或假设)得出一个判断,这种思维方式就是推理 (2)推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出 的判断,叫做结论 。