2.1平面直角坐标系中的基本公式 21.1数轴上的基本公式 学习目标1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2.掌握数轴上两点间的距离公式.3.掌握数轴上向量加法的坐标运算 知识点一数轴(或直线坐标系) 1数轴(直线坐标系)的定义:一条给出了原点、度量单位和正方向的直线叫
2.1.1 向量的概念 学案含答案Tag内容描述:
1、2.1平面直角坐标系中的基本公式21.1数轴上的基本公式学习目标1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2.掌握数轴上两点间的距离公式.3.掌握数轴上向量加法的坐标运算知识点一数轴(或直线坐标系)1数轴(直线坐标系)的定义:一条给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系2数轴上的点P与实数x的对应法则点P的位置原点朝正向的一侧原点原点朝负向的一侧与点P对应的实数x正数0负数实数x的大小等于点P到原点的距离0绝对值等于点P到原点的距离依据这个法则,实数集和数轴上的。
2、第一节第一节 人体内环境的稳态人体内环境的稳态 第第 1 课时课时 内环境的稳态内环境的稳态 学习目标与核心素养 1.描述人体内环境的组成,树立结构与功能观。2.分析对比内环境的 理化性质,培养归纳与概括能力。3.概述稳态的概念,分析内环境稳态的调控机制及其生理 意义,树立稳态与平衡观。 一、体液与内环境的组成 1体液 (1)概念:人体的细胞外液和细胞内液统称为体液。 (2)组成及比例 2内环境 (1)概念:相对于人体赖以生活的外界环境,细胞外液是人体内细胞直接生活的环境,又称内 环境。 (2)组成及关系 (3)作用:是体内细胞生活的直。
3、第第 1 节节 胚胎工程的理论基础胚胎工程的理论基础 第第 1 课时课时 生殖细胞的形成生殖细胞的形成 目标导读 1.结合教材 P2426图文,简述精子的形态结构、发生过程和激素调节。2.分析教 材 P2728内容,理解卵细胞的形态结构、发生过程和激素调节。 重难点击 1.精子和卵细胞的形态、结构。2.精子和卵细胞的形成过程。 黑脚雪貂目前已成为世界上濒危的哺乳动物之一。成年黑脚雪貂平均身长 0。
4、减数分裂的概念精子的形成过程减数分裂的概念精子的形成过程 A 组 基础对点练 题组一 减数分裂的相关概念 1下列不是减数分裂的特点的是 A同源染色体联会 B生殖细胞内含有亲代细胞半数的同源染色体 C细胞连续分裂两次 D着丝粒只分裂一次 答案。
5、6.16.1 平面向量的概念平面向量的概念 6 6. .1.11.1 向量的实际背景与概念向量的实际背景与概念 6 6. .1.21.2 向量的几何表示向量的几何表示 6 6. .1.31.3 相等向量与共线向量相等向量与共线向量 基础达标。
6、 6.1 平面向量的概念平面向量的概念 学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的 区别. 2.会用有向线段、字母表示向量,了解有向线段与向量的联系与区别.3.理解零向量、单位向 量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. 知识点一 向量的概念 1.向量:既有大小又有方向的量叫做向量. 2.数量:只有大小没有方向的量称为数量. 知识点二 向量的几何表示 1.有向线段 具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示. 以 A 为起点、B 为终点。
7、2.1.1函数的概念和图象(二)一、选择题1已知函数yf(x)的对应法则如下表,函数yg(x)的图象是如图所示的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2)的值为()x123f(x)230A3 B2 C1 D0答案B解析由函数g(x)的图象知,g(2)1,则f(g(2)f(1)2.2“龟兔赛跑”进述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点用s1,s2分别表示乌龟和兔子所行的路程(t为时间),则下图与故事情节相吻合的是()答案B解析A中是同时到达;B中乌龟到达时,兔子还没。
8、2.1函数的概念2.1.1函数的概念和图象(一)一、选择题1下列对应是从集合A到集合B的函数的是()AAR,BxR|x0,f:xBAN,BN*,f:x|x1|CAxR|x0,BR,f:xx2DAR,BxR|x0,f:x答案C解析A中,当x0时,无意义;B中,当x1时,输出值为0,而集合B中没有0;C正确;D不正确2设Mx|0x2,Ny|0y2,给出下列四个图形,其中能表示从集合M到集合N的函数关系的是()答案B解析A中,x2时,在N中无元素与之对应,不满足任意性,所以A不符合B中,同时满足任意性与唯一性,所以B符合C中,x2时,对应元素y3N,不满足任意性,所以不符合D中,x1时,在N中有两个元素与之。
9、 5.1 平面向量的概念及线性运算平面向量的概念及线性运算 最新考纲 考情考向分析 1.了解向量的实际背景 2.理解平面向量的概念, 理解两个向量相等的含义 3.理解向量的几何表示 4.掌握向量加法、 减法的运算, 并理解其几何意义 5.掌握向量数乘的运算及其几何意义,理解两个向 量共线的含义 6.了解向量线性运算的性质及其几何意义. 主要考查平面向量的线性运算(加法、减 法、数乘向量)及其几何意义、共线向量 定理常与三角函数、 解析几何交汇考查, 有时也会有创新的新定义问题;题型以 选择题、填空题为主,属于中低档题 目偶尔会在解答。
10、6.1 平面向量的概念平面向量的概念 一选择题 1.下列说法中,正确的个数是 时间摩擦力重力都是向量; 向量的模是一个正实数; 相等向量一定是平行向量; 向量 a 与 b 不共线,则 a 与 b 都是非零向量. A.1 B.2 C.3 D.。
11、2.1向量的概念及表示基础过关1.下列说法正确的是()A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一存在的C.|D单位向量的方向相同或相反解析零向量方向任意,A错误;单位向量由于方向不同,故有无数个,B、D错误,故只有C正确.答案C2.设b是a的相反向量,则下列说法中错误的是()A.ab B.a与b的长度相等C.a是b的相反向量 D.a与b一定不相等解析对于A,若两向量均为非零向量,则它们的模相等,方向相反,两向量共线;若两向量均为零向量,根据零向量的方向是任意的,两向量也可以理解为共线,故A正确;对于B,根据相反向量的概念,a与b的。
12、 第一节第一节 种群种群的特征的特征 情景导入 课标导航 课程标准 1.列举种群的特征。 2.分析影响或决定种群密度的因素。 3.掌握种群密度调查的两种方法。 关键术语 种群 种群密度 样方法 标志重捕法 年龄结构 性比 种群和种群密度 基础梳理 1种群概念 在一定时间内,生活在一个特定区域内的同一物种的所有成员。 2种群密度定义 单位面积或容积内某种群个体数目的多少,是种群最基本的数量特征。 表达式:种群密度生物个体数 面积容积 。 3调查方法 (1)最直接方法:总数量调查。 (2)常用方法:取样调查法,动物常用方法是标志重捕法,植物。
13、21指数函数21.1指数概念的推广基础过关1化简的结果是()AaB.Ca2D.答案B解析(aa)(a)a.2若(12x)有意义,则x的取值范围是()ARBx|xR且xCx|xDx|x答案D解析(12x),12x0,得x.316等于()A.BC2D2答案A解析16(24)24()21.4计算0.250.5的值为()A7B3C7或3D5答案B解析0.250.52()3()22323.5设aam,则等于()Am22B2m2Cm22Dm2答案C解析aam,2m2,即aa12m2,am22.m22.故选C.6如果a3,b384,那么an3_.答案32n。
14、 2.1 平面向量的实际背景及基本概念平面向量的实际背景及基本概念 学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形 中这些相关的概念 知识点一 向量的概念 1向量:既有大小,又有方向的量叫做。
15、2.1向量的概念及表示学习目标1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念知识点一向量的概念1向量:既有大小,又有方向的量称为向量2数量:只有大小,没有方向的量称为数量知识点二向量的表示方法1向量的几何表示:向量可以用一条有向线段表示带有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所。
16、2.1函数的概念2.1.1函数的概念和图象(一)学习目标1.理解函数、定义域的概念.2.了解构成函数的三要素.3.正确使用函数符号,会求简单函数的定义域、函数值知识点一函数的定义设A,B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为yf(x),xA.提示(1)集合的特殊性:集合A和B不能为空集,并且必须为数集(2)对应的方向性:其方向性是指对A中的任何一个数x,在集合B中都有数f(x)与之对应,先是集合A,其次是集合B.(3)对应的唯一性:是指与。
17、2.1.1函数的概念和图象(二)学习目标1.理解函数图象的含义.2.会画简单的函数图象.3.能利用图象初步研究函数的性质.4.会求简单函数的值域知识点一函数图象的含义将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点所有这些点组成的集合(点集)为(x,f(x)|xA,即(x,y)|yf(x),xA,所有这些点组成的图形就是函数yf(x)的图象知识点二函数的值域若A是函数yf(x)的定义域,则对于A中的每一个x,都有一个输出值y与之对应,我们将所有。
18、21.1指数概念的推广学习目标1.理解根式的概念及分数指数幂的含义.2.会进行根式与分数指数幂的互化.3.掌握根式的运算性质和有理指数幂的运算性质知识链接14的平方根为2,8的立方根为2.2232232,(22)216,(23)236,4.预习导引1把n(正整数)个实数a的连乘记作an,当a0时有a01,an(nN)2整数指数幂的运算有下列规则:amanamn,amn,(am)namn,(ab)nanbn,()n(b0)3若一个(实)数x的n次方(nN,n2)等于a,即xna,就说x是a的n次方根.3次方根也称为立方根当n是奇数时,数a的n次方根记作.a0时,0;a0时,0;a0时,0.当n是偶数时,正数a的n次方根有两个,。
19、2.1向量的线性运算2.1.1向量的概念一、选择题1.下列物理量:质量;速度;位移;力;加速度;路程.其中是向量的有()A.2个 B.3个 C.4个 D.5个答案C解析是向量.2.下列说法中正确的个数是()任一向量与它的相反向量都不相等;若一个向量方向不确定,则其模为0;共线的向量,若起点不同,则终点一定不同;单位向量的模都相等.A.0 B.1 C.2 D.3答案C3.下列说法正确的是()A.若ab,则a与b的方向相同或相反B.若ab,bc,则acC.若两个单位向量平行,则这两个单位向量相等D.若ab,bc,则ac答案D4.如图,在四边形ABCD中,若,则图中相等的向量是()A.与 B.。
20、21向量的线性运算21.1向量的概念基础过关1有下列说法:若向量a与向量b不平行,则a与b方向一定不相同;若向量,满足|,且与同向,则;ab的充要条件是|a|b|且ab.其中,正确说法的个数是()A1B2C3D4答案A解析对于,由共线向量的定义知,两向量不平行,方向一定不相同,故正确;对于,因为向量不能比较大小,故错误;对于,由ab能推出|a|b|且ab,反过来,则不成立,故错误2给出下列五个命题:两个向量相等,则它们的起点相同,终点相同;若|a|b|,则ab;若,则四边形ABCD是正方形;平行四边形ABCD中,一定有;若mn,nk,则mk.其中不正确的命题。