欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.1.2函数的表示方法一课时对点练含答案

第2课时二次函数、二次方程及简单的一元二次不等式 一、选择题 1.若关于x的方程(a1)x23x20是一元二次方程,则a的取值范围是() A.a0 B.a1 C.a1 D.a1 答案B 解析根据题意,得a10,解得a1.故选B. 2.若一元二次方程x22x1a0无实根,则a的取值范围是() A.a0

2.1.2函数的表示方法一课时对点练含答案Tag内容描述:

1、第2课时二次函数、二次方程及简单的一元二次不等式一、选择题1.若关于x的方程(a1)x23x20是一元二次方程,则a的取值范围是()A.a0 B.a1C.a1 D.a1答案B解析根据题意,得a10,解得a1.故选B.2.若一元二次方程x22x1a0无实根,则a的取值范围是()A.a0 B.a0C.a D.a答案A解析一元二次方程x22x1a0无实根,(2)241(1a)0,解得a0,故选A.3.若m,n是一元二次方程x2x20的两个根,则mnmn的值是()A.3 B.3 C.1 D.1答案D解析m,n是一元二次方程x2x20的两个根,mn1,mn2,则mnmn1(2)1,故选D.4.不等式2x2x10的解是()A.x1 B.x1C.x1或x2 D.x或x1答案D解析。

2、第2课时二元一次不等式组表示的平面区域一、选择题1图中阴影部分表示的区域对应的二元一次不等式组为()A. B.C. D.考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案A解析取原点O(0,0)检验,满足xy10,故异侧点满足xy10,排除B,D;O点满足x2y20,排除C.2不等式组表示的平面区域的面积为()A28 B16 C. D121考点不等式(组)表示平面区域的应用题点平面区域的面积答案B解析作出不等式组表示的平面区域(图略),可知该区域为等腰直角三角形,其三个顶点的坐标分别为(3,3),(3,5),(1,1),所以其面积S8416.3不等式组表示的平面。

3、5.65.6 函数函数 y yA Asinsin xx 第第 1 1 课时课时 函数函数 y yA Asinsin xx 的图象的图象 一一 课时对点练课时对点练 1为了得到函数 ysin2x6的图象,可以将函数 ysin2x3的图象 A向。

4、8函数yAsin(x)的图像与性质(一)一、选择题1将函数y2sin的图像向右平移个单位长度后,所得图像对应的函数为()Ay2sin By2sinCy2sin Dy2sin答案D解析将函数y2sin的图像向右平移个单位长度,所得函数为y2sin2sin,故选D.2若把函数ysin的图像向右平移m(m0)个单位长度后,得到ysin x的图像,则m的最小值为()A. B. C. D.答案C解析依题意,ysinsin x,m2k(kZ),m2k(kZ),又m0,m的最小值为.3把函数ysin的图像向右平移个单位长度,所得图像对应的函数是()A非奇非偶函数 B既是奇函数又是偶函数C奇函数 D偶函数答案D解析ysin的图像向右平移个单位长度。

5、第第 3 3 课时课时 函数函数 y yA Asinsin xx 的性质的性质 一一 课时对点练课时对点练 1若 x14,x234是函数 fxsin x0两个相邻的最值点,则 等于 A2 B.32 C1 D.12 答案 A 解析 由题意知T。

6、5.75.7 三角函数的应用三角函数的应用 第第 1 1 课时课时 三角函数的应用三角函数的应用 一一 课时对点练课时对点练 1简谐运动 y4sin5x3的相位与初相分别是 A5x3,3 B5x3,4 C5x3,3 D4,3 答案 C 解析。

7、3.3.2二元一次不等式组表示的平面区域一、填空题1图中阴影部分表示的区域对应的二元一次不等式组为_考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案解析两边界直线方程为xy10,x2y20,取原点O(0,0)检验,满足xy10,故异侧点满足xy10,O点满足x2y20,故阴影部分满足2不等式组表示的平面区域的面积为_考点不等式(组)表示平面区域的应用题点平面区域的面积答案16解析作出不等式组表示的平面区域(图略),可知该区域为等腰直角三角形,其三个顶点的坐标分别为(3,3),(3,5),(1,1),所以其面积S8416.3如图的正方形及其内部的。

8、3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域一、填空题1下列所给点中与点(1,2)位于直线2xy10的同一侧的是_(1,1); (0,1); (1,0); (1,0)考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案解析212110,点(1,2)位于2xy10表示的平面区域内,而四个点(1,1),(0,1),(1,0),(1,0)中只有(1,0)满足2xy10.2设点P(x,y),其中x,yN,满足xy3的点P的个数为_考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案10解析作的平面区域如图所示,符合要求的点P的个数为10.3在3x5y4表示的平面区。

9、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)一、选择题1.在同一坐标系中,函数ysin x,x0,2与ysin x,x2,4的图象()A.重合 B.形状相同,位置不同C.关于y轴对称 D.形状不同,位置相同答案B解析由正弦曲线,知B正确.2.用五点法画ysin x,x0,2的图象时,关键点不包括()A. B. C.(,0) D.(2,0)答案A解析易知不是关键点.3.方程sin x的根的个数是()A.7 B.8 C.9 D.10答案A解析在同一坐标系内画出y和ysin x的图象如图所示.根据图象可知方程有7个根.4.对于正弦函数的图象,有以下四个说法:关于原点对称;关于x轴对称;关于y轴对称;有。

10、1.3.2余弦函数、正切函数的图象与性质(一)一、选择题1.若ysin x是减函数,ycos x是增函数,那么角x在()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C2.函数y2cos x的单调递增区间是()A.2k,2k2 (kZ)B.k,k2 (kZ)C. (kZ)D.2k,2k (kZ)答案D解析令ucos x,则y2u,y2u在u(,)上是增函数,y2cos x的增区间,即ucos x的增区间,即vcos x的减区间2k,2k (kZ).3.下列函数中,周期为,且在上为减函数的是()A.ysin B.ycosC.ysin D.ycos答案A解析因为函数周期为,所以排除C,D.又因为ycossin 2x在上为增函数,故B不符合.故选A.4.要得到ycos的图。

11、2.1函数的概念2.1.1函数的概念和图象(一)一、选择题1下列对应是从集合A到集合B的函数的是()AAR,BxR|x0,f:xBAN,BN*,f:x|x1|CAxR|x0,BR,f:xx2DAR,BxR|x0,f:x答案C解析A中,当x0时,无意义;B中,当x1时,输出值为0,而集合B中没有0;C正确;D不正确2设Mx|0x2,Ny|0y2,给出下列四个图形,其中能表示从集合M到集合N的函数关系的是()答案B解析A中,x2时,在N中无元素与之对应,不满足任意性,所以A不符合B中,同时满足任意性与唯一性,所以B符合C中,x2时,对应元素y3N,不满足任意性,所以不符合D中,x1时,在N中有两个元素与之。

12、2.2.2函数的奇偶性(一)一、选择题1下列说法正确的是()Af(x)x3是奇函数Bf(x)|x2|是偶函数Cf(x)是奇函数Df(x)0,x6,6)既是奇函数又是偶函数答案A解析f(x)x3的定义域为(,0)(0,),且满足f(x)f(x),所以是奇函数,A正确;f(x)|x2|的图象是由f(x)|x|的图象向右平移2个单位长度得到的,因为不关于y轴对称,所以B不正确;f(x)的定义域是(,1)(1,),不关于原点对称,函数不具有奇偶性,C不正确;f(x)0,x6,6)的定义域不关于原点对称,所以f(x)在6,6)上是非奇非偶函数,所以D不正确2设f(x)是定义在R上的奇函数,且当x0时,f(x)x2x,则f(1)等于()A。

13、2.2函数的简单性质2.2.1函数的单调性(一)一、选择题1下列函数中,在(0,2)上是单调增函数的是()Ay By2x1Cy12x Dy(2x1)2答案B解析对于A,y在(,0),(0,)上是单调减函数;对于B,y2x1在R上是单调增函数;对于C,y12x在R上是单调减函数;对于D,y(2x1)2在上是单调减函数,在上是单调增函数,故选B.2若函数f(x)在区间(a,b)上为增函数,在区间(b,c)上也是增函数,则函数f(x)在(a,c)上()A必是增函数 B必是减函数C是增函数或是减函数 D无法确定单调性答案D解析无法确定单调性,如f(x)在(,0)上是单调增函数,在(0,)上是单调增函数,而在整个。

14、5简单的幂函数(一)一、选择题1.下列函数中是幂函数的是()A.yx4x2 B.y10xC.y D.yx1考点幂函数的概念题点判断函数是否为幂函数答案C解析根据幂函数的定义知,y是幂函数,yx4x2,y10x,yx1都不是幂函数.2.已知y(m2m5)xm是幂函数,且在第一象限内是减函数,则m的值为()A.3 B.2 C.3或2 D.3考点幂函数的性质题点幂函数的单调性答案A解析由y(m2m5)xm是幂函数,知m2m51,解得m2或m3.该函数在第一象限内是减函数,m0.故m3.3.已知幂函数f(x)(nZ)在(0,)上是减函数,则n的值为()A.3 B.1 C.2 D.1或3考点幂函数概念题点求幂函数解析式答案B解析由于f(x)。

15、2.1.2函数的表示方法(二)一、选择题1下列图象能表示函数y|x|(x2,2)的图象的是()答案B解析由y|x|0知,图象在x轴下方,又x2,2,故图象端点为实点故选B.2设函数f(x)则f的值为()A. B C. D18答案A解析因为f(2)4,所以ff1.3设函数f(x)若f(a)f(1)2,则a等于()A3 B3C1 D1考点分段函数题点分段函数求值答案D解析f(1)1.f(a)f(1)f(a)12.f(a)1,即或解得a1,解得a1.a1.4函数f(x)的值域是()AR B0,)C0,3 Dx|0x2或x3考点分段函数题点分段函数的定义域、值域答案D解析值域为0,23,2x|0x2或x35。

16、2.1.2函数的表示方法(一)一、选择题1若二次函数f(x)x2bxc的顶点为(1,2),则b,c的值分别为()A2,1 B2,1C1,1 D1,3答案A解析由题意知f(x)(x1)22x22x1,所以b2,c1.2若函数f(2x1)x22x,则f(3)等于()A1 B0 C1 D3答案A解析方法一令2x1t,则x.故f(t)22(t26t5),即f(x)(x26x5)故f(3)(32635)1.方法二令2x13,得x1.从而f(3)f(211)12211.3设f(x),则f是()Af(x) Bf(x)C. D.答案A解析ff(x)4已知f,则f(x)的解析式为()Af(x)Bf(x)Cf(x)(x0且x1)Df(x)1x答案。

【2.1.2函数的表示方法一课时对点练含答案】相关DOC文档
§5.6(第1课时)函数y=Asin(ωx+φ)的图象(一)课时对点练(含答案)
§8 函数y=Asin(ωx+φ)的图像与性质(一)课时对点练含答案
§5.6(第3课时)函数y=Asin(ωx+φ)的性质(一)课时对点练(含答案)
§5.7(第1课时)三角函数的应用(一)课时对点练(含答案)
《3.3.2二元一次不等式组表示的平面区域》课时对点练(含答案)
《3.3.1二元一次不等式表示的平面区域》课时对点练(含答案)
1.3.1 正弦函数的图象与性质(一)课时对点练(含答案)
1.3.2 余弦函数、正切函数的图象与性质(一)课时对点练(含答案)
2.1.1函数的概念和图象(一)课时对点练(含答案)
2.2.2函数的奇偶性(一)课时对点练(含答案)
2.2.1函数的单调性(一)课时对点练(含答案)
2.5简单的幂函数(一)课时对点练(含答案)
2.1.2函数的表示方法(二) 课时对点练(含答案)
2.1.2函数的表示方法(一)课时对点练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开