第一章第一章 计数原理计数原理 章末复习章末复习 学习目标 1.掌握分类加法计数原理与分步乘法计数原理.2.理解排列与组合的区别与联系, 能利用排列组合解决一些实际问题.3.能用计数原理证明二项式定理,掌握二项式定理和二项 展开式的性质 1分类加法计数原理 做一件事,完成它有 n 类办法,在第一类办
2.1.3 超几何分布 学案人教B版高中数学选修2-3Tag内容描述:
1、第一章第一章 计数原理计数原理 章末复习章末复习 学习目标 1.掌握分类加法计数原理与分步乘法计数原理.2.理解排列与组合的区别与联系, 能利用排列组合解决一些实际问题.3.能用计数原理证明二项式定理,掌握二项式定理和二项 展开式的性质 1分类加法计数原理 做一件事,完成它有 n 类办法,在第一类办法中有 m1种不同的方法,在第二类办法中有 m2 种不同的方法在第 n 类办法中有 mn种不同的方。
2、第三章第三章 统计案例统计案例 章末复习章末复习 学习目标 1.会求回归直线方程, 并用回归直线进行预报.2.理解独立性检验的基本思想及实 施步骤 1最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则回归直线方程为y b xa ,其 中b i1 n xi x yi y i1 n xi x 2 i1 n xiyin x y i1 n x2in x 2 ,a y b。
3、 2.3 随机变量的数字特征随机变量的数字特征 2.3.1 离散型随机变量的数学期望离散型随机变量的数学期望 学习目标 1.理解取有限值的离散型随机变量的均值或数学期望的概念.2.会求离散型随机 变量的数学期望.3.会利用数学期望分析和解决一些实际问题 知识点一 离散型随机变量的数学期望 设有 12 个西瓜,其中 4 个重 5 kg,3 个重 6 kg,5 个重 7 kg. 思考 1 任取 1 。
4、2.3.2 离散型随机变量的方差离散型随机变量的方差 学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散 型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及二点分布、二项分布的 方差的求法,会利用公式求它们的方差 知识点一 离散型随机变量的方差、标准差 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为 X 和 Y, X 和 。
5、第二章第二章 概率概率 章末复习章末复习 学习目标 1.了解条件概率和两个事件相互独立的概念.2.理解离散型随机变量及其分布列, 并掌握两个特殊的分布列二项分布和超几何分布.3.理解离散型随机变量的期望、方差的 概念,并能应用其解决一些简单的实际问题.4.了解正态分布曲线特点及曲线所表示的意义 1条件概率的性质 (1)非负性:0P(B|A)1. (2)可加性:如果 B 和 C 是两个互斥事件, 。
6、第第 2 课时课时 组合的应用组合的应用 学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问 题 1组合的有关概念 从 n 个不同元素中,任意取出 m(mn)个元素并成一组,叫做从 n 个不同元素中任取 m 个元 素的一个组合 组合数,用符号 Cm n表示其公式为 Cm nA m n Am m nn1n2nm1 m! n! m!nm!(n,mN ,mn)特别地 。
7、第第 2 课时课时 排列的应用排列的应用 学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列, 能应用排列数公 式解决简单的实际问题 1排列数公式 Am nn(n1)(n2)(nm1)(n,mN,mn) n! nm!. Annn(n1)(n2)2 1n!(叫做 n 的阶乘)另外,我们规定 0!1. 2应用排列与排列数公式求解实际问题中的计数问题的基本步骤 类型一 无限制条件。
8、2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学习目标1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系 知识点一随机变量 思考1抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上 思考2在一块地里种10棵树苗,成活的棵数为x,则x可取哪些数字? 答案x0,1,2,3,1。
9、 1.3 二项式定理二项式定理 1.3.1 二项式定理二项式定理 学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会 用二项式定理解决与二项展开式有关的简单问题 知识点 二项式定理及其相关概念 (ab)2a22abb2; (ab)3a33a2b3ab2b3; (ab)4a44a3b6a2b24ab3b4; (ab)5a55a4b10a3b210a2b35ab。
10、 3.1 独立性检验独立性检验 学习目标 1.理解 22 列联表的意义,会依据列联表中数据判断两个变量是否独立.2.掌握 2统计量的意义和独立性检验的基本思想 知识点一 22 列联表和 2统计量 122 列联表 一般地, 对于两个研究对象和, 有两类取值类 A 和类 B, 也有两类取值类 1 和类 2, 得到如下列联表所示的抽样数据: 类 1 类 2 合计 类 A n11 n12 n1 类。
11、2.2.2 事件的独立性事件的独立性 学习目标 1.在具体情境中, 了解两个事件相互独立的概念.2.能利用相互独立事件同时发生 的概率公式解决一些简单的实际问题 知识点 相互独立事件的概念与性质 甲箱里装有 3 个白球、2 个黑球,乙箱里装有 2 个白球,2 个黑球从这两个箱子里分别摸出 1 个球,记事件 A“从甲箱里摸出白球”,B“从乙箱里摸出白球” 思考 1 事件 A 发生会影响事件 B 发。
12、1.3.2 杨辉三角杨辉三角 学习目标 1.了解杨辉三角, 会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2. 理解二项式系数的性质并灵活运用 知识点 “杨辉三角”与二项式系数的性质 (ab)n的展开式的二项式系数,当 n 取正整数时可以表示成如下形式: 思考 1 从上面的表示形式可以直观地看出什么规律? 答案 在同一行中, 每行两端都是 1, 与这两个 1 等距离的项的系数相等; 在。
13、1.1基本计数原理(二) 学习目标巩固分类加法计数原理和分步乘法计数原理,并能灵活应用这两个计数原理解决实际问题 知识点一分类加法计数原理与分步乘法计数原理 分类加法计数原理 分步乘法计数原理 任务 做一件事 步骤 完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法 完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二。
14、2.1.2离散型随机变量的分布列 学习目标1.理解取有限个值的离散型随机变量及其分布列的概念.2.掌握离散型随机变量分布列的表示方法与性质.3.理解二点分布的特点 知识点一离散型随机变量的分布列 思考掷一枚骰子,所得点数为X,则X可取哪些数字?当X取不同的值时,其概率分别是多少?你能用表格表示X与P的对应关系吗? 答案(1)x1,2,3,4,5,6,概率均为. (2)X与P的对应关系为 X 1 2。
15、2.2.3 独立重复试验与二项分布独立重复试验与二项分布 学习目标 1.理解 n 次独立重复试验的模型及其意义.2.理解二项分布, 并能解决一些简单的 实际问题.3.会求 n 次独立重复试验及二项分布的概率 知识点一 n 次独立重复试验 思考 1 要研究抛掷硬币的规律,需做大量的掷硬币试验其前提是什么? 答案 条件相同 思考 2 试验结果有哪些? 答案 正面向上或反面向上,即事件发生或者不发生 。
16、 2.2 条件概率与事件的独立性条件概率与事件的独立性 2.2.1 条件概率条件概率 学习目标 1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一 些简单的实际问题 知识点一 条件概率 100 件产品中有 93 件产品的长度合格,90 件产品的质量合格,85 件产品的长度、质量都合 格 令 A产品的长度合格,B产品的质量合格,AB产品的长度、质量都合格 思考 1 试求。
17、 3.2 回归分析回归分析 学习目标 1.会建立线性回归模型分析两个变量间的相关关系.2.能通过相关系数判断两个 变量间的线性相关程度 知识点一 回归分析及回归直线方程 思考 1 什么叫回归分析? 答案 回归分析是对具有相关关系的两个变量进行统计分析的一种方法 思考 2 回归分析中,利用回归直线方程求出的函数值一定是真实值吗? 答案 不一定是真实值,利用回归直线方程求的值,在很多时候是个预测值 。
18、 2.4 正态分布正态分布 学习目标 1.通过实际问题, 了解什么是正态曲线和正态分布.2.认识正态曲线的特点及曲线 所表示的意义.3.会根据正态曲线的性质求随机变量 X 在某一范围内的概率 知识点 正态分布 1概率密度曲线 (1)特点:曲线位于横轴的上方,它与横轴一起所围成的面积为 1. (2)意义:概率密度曲线反映变化规律所起的作用与离散型随机变量分布列的作用是相同的 2正态变量的概率密度函。
19、2 超几何分布超几何分布 学习目标 1.理解超几何分布的概念.2.掌握超几何分布的公式 知识点 超几何分布 已知在 10 名学生中,有 4 名男生,现任选 3 人,用 X 表示选到的男生的人数 思考 1 X 可能取哪些值? 答案 0,1,2,3. 思考 2 “X2”表示的试验结果是什么?P(X2)的值呢? 答案 任选 3 人中恰有 2 人为男生,P(X2)C 2 4C 1 6 C310 . 思考。
20、2.1.3 超几何分布超几何分布 学习目标 1.进一步理解离散型随机变量的分布列的求法、作用.2.掌握超几何分布的特点, 并能简单的应用 知识点 超几何分布 已知在 8 件产品中有 3 件次品,现从这 8 件产品中任取 2 件,用 X 表示取得的次品数 思考 1 X 可能取哪些值? 答案 X0,1,2. 思考 2 X1 表示的试验结果是什么?求 P(X1)的值 答案 任取 2 件产品中恰有 1 。