欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.1等差数列第2课时等差数列的性质 学案含答案

4 4. .2.22.2 等差数列的前等差数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等差数列前等差数列前 n n 项和公式的推导及简单应用项和公式的推导及简单应用 学习目标 1.了解等差数列前 n 项和公式的推导过程.2.掌握等差数列前 n 项和公式.3.熟练掌 握等差数列的五个量

2.1等差数列第2课时等差数列的性质 学案含答案Tag内容描述:

1、4 4. .2.22.2 等差数列的前等差数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等差数列前等差数列前 n n 项和公式的推导及简单应用项和公式的推导及简单应用 学习目标 1.了解等差数列前 n 项和公式的推导过程.2.掌握等差数列前 n 项和公式.3.熟练掌 握等差数列的五个量 a1,d,n,an,Sn的关系,能够由其中三个求另外两个 知识点 等差数列的前 n 项和公式 已。

2、4.24.2 等差数列等差数列 4 4. .2.12.1 等差数列的概念等差数列的概念 第第 1 1 课时课时 等差数列的概念及通项公式等差数列的概念及通项公式 学习目标 1.理解等差数列、等差中项的概念.2.掌握等差数列的通项公式,并能运用通项公 式解决一些简单的问题.3.掌握等差数列的判断与证明方法 知识点一 等差数列的概念 一般地,如果一个数列从第 2 项起,每一项与它的前一项的差都等于同。

3、第第 2 2 课时课时 等差数列前等差数列前 n n 项和的性质及应用项和的性质及应用 学习目标 1.进一步熟练掌握等差数列的通项公式和前 n 项和公式,了解等差数列前 n 项和 的一些性质.2.掌握等差数列前 n 项和的最值问题 知识点一 等差数列前 n 项和的性质 1若数列an是公差为 d 的等差数列,则数列 Sn n 也是等差数列,且公差为d 2. 2设等差数列an的公差为 d,Sn为其。

4、第第 2 课时课时 等差数列前等差数列前 n 项和的性质及应用项和的性质及应用 1在等差数列an中,a11,其前 n 项和为 Sn,若S8 8 S6 62,则 S10 等于( ) A10 B100 C110 D120 答案 B 解析 an是等差数列,a11, Sn n 也是等差数列且首项为S1 11. 又S8 8 S6 6 2, Sn n 的公差是 1, S10 101(101)110。

5、第第 2 课时课时 等差数列的性质等差数列的性质 1 已知等差数列an的公差为 d(d0), 且 a3a6a10a1332, 若 am8, 则 m 的值为( ) A12 B8 C6 D4 答案 B 解析 由等差数列的性质,得 a3a6a10a13(a3a13)(a6a10) 2a82a84a832, a88,又 d0,m8. 2已知数列an,bn为等差数列,且公差分别为 d12,d21,则数列。

6、第第 2 2 课时课时 等差数列的性质等差数列的性质 学习目标 1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质简 化计算 知识点一 等差数列通项公式的变形及推广 设等差数列an的首项为 a1,公差为 d,则 andn(a1d)(nN*), anam(nm)d(m,nN*), danam nm (m,nN*,且 mn) 其中,的几何意义是点(n,an)均在直线 ydx(a。

7、第二章 数列2.3 等差数列的前 n 项和2.3 等差数列的前 n 项和 (第 2 课时)学习目标进一步熟练掌握等差数列的通项公式和前 n 项和公式,了解等差数列的一些性质,并会用它们解决一些相关问题,提高应用意识.合作学习一、设计问题,创设情境复习引入1.通项公式: 2.求和公式: 3.两个公式中含有五个量,分别是 ,把公式看成方程,能解决几个量? 4.Sn 是关于 n 的二次函数,二次函数存在最值问题,如何求最值?5.Sn 与 an 的关系:S n=a1+a2+a3+an-1+an,如何求数列a n的通项公式?二、信息交流,揭示规律6.两个公式中含有五个量,分别是 Sn,an,n,d,a1,两个公。

8、2.2.3等差数列的前n项和第1课时公式推导及简单应用一、填空题1若数列an的前n项和Snn21,则a4_.考点an与Sn关系题点由Sn公式求an答案7解析a4S4S3(421)(321)7.2在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为_考点等差数列前n项和题点求等差数列的前n项和答案10 000解析由已知得anbn为等差数列,故其前100项的和为S10050(2575100)10 000.3在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为_考点等差数列前n项和题点求等差数列的前n项和答案100解析S10100.4在等差数列an中,若a2a88,则该数列的前9项。

9、22等差数列的前n项和第1课时等差数列的前n项和公式一、选择题1已知数列an中,a11,anan1(n2,nN),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.2等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A1 B. C2 D3答案C解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.3记等差数列an的前n项和为Sn,若a1,S420,则S6等于()A16 B24 C36 D48答案D解析S426d20,d3.故S6315d48.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8。

10、第3课时等差数列前n项和公式一、选择题1在20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A200 B100 C90 D70答案B解析S10100.2在等差数列an中,若a2a88,则该数列的前9项和S9等于()A18 B27 C36 D45答案C解析S9(a1a9)(a2a8)36.3已知数列an中,a11,anan1(n2,nN*),则数列an的前9项和等于()A27 B. C45 D9答案A解析由已知数列an是以1为首项,以为公差的等差数列,S99191827.4在等差数列an和bn中,a125,b175,a100b100100,则数列anbn的前100项的和为()A10 000 B8 000C9 000 D11 000答案A解析由已知得anbn为等差数列,故其。

11、第4课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值的n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列又a124,d2,Sn24n(2)n225n2.nN*,当n12或13时,Sn最大2等差数列an中,a1a2a324,a18a19a2078,那么此数列前20项的和为()A160 B180 C200 D220答案B解析由a1a2a33a224,得a28,由a18a19a203a1978,得a1926,于是S2010(a1a20)10(a2a19)10(826)180.3在等差数列an中,Sn是其前n项和,且S2 011S2 016,SkS2 008,则正整数k为()A2 017 B2 0。

12、22等差数列的前n项和第1课时等差数列的前n项和公式学习目标1.掌握等差数列前n项和公式及其获取思路.2.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中任意三个求另外两个.3.能用an与Sn的关系求an.知识点一等差数列前n项和公式已知量首项,末项与项数首项,公差与项数选用公式SnSnna1d知识点二a1,d,n,an,Sn知三求二(1)在等差数列an中,ana1(n1)d,Sn或Snna1d.两个公式共涉及a1,d,n,an及Sn五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n项和(2)依据方程的思想,在等差数列前n项和公式中已知其中三个量可。

13、第2课时等差数列前n项和的性质一、选择题1已知数列an满足an262n,则使其前n项和Sn取最大值时n的值为()A11或12 B12C13 D12或13答案D解析an262n,an1an2,数列an为等差数列,且a124,d2,Sn24n(2)n225n2.nN,当n12或13时,Sn最大2等差数列an中,首项a10,公差d0,d0,C中曲线满足3数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2 B1 C0 D1答案B解析等差数列前n项和Sn的形式为Snan2bn,(n1)2n22n1an2。

14、2等差数列21等差数列第1课时等差数列的概念及通项公式一、选择题1若数列an满足3an13an1,则数列an是()A公差为1的等差数列B公差为的等差数列C公差为的等差数列D不是等差数列答案B解析由3an13an1,得3an13an1,即an1an.所以数列an是公差为的等差数列2已知数列an是等差数列,a22,a58,则公差d的值为()A. B C2 D2答案C解析设an的首项为a1,公差为d,根据题意得解得d2.3在数列an中,a12,2an12an1,则a101的值为()A52 B51 C50 D49答案A解析因为2an12an1,a12,所以数列an是首项a12,公差d的等差数列,所以a101a1100d210052.4已知在等差数列an中。

15、第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2n(nN*),则S2nn(anan1),S偶S奇nd,(S奇0);性质2若等差数列的项数为2n1(nN*),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,(1)等差数列前n项和Sn不一定是关于n的二次函数。

16、第2课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列性质2若等差数列的项数为2n(nN),则S2nn(anan1),S偶S奇nd,(S奇0);若等差数列的项数为2n1(nN),则S2n1(2n1)an(an是数列的中间项),S奇S偶an,(S奇0)性质3an为等差数列为等差数列知识点二等差数列an的前n项和公式与函数的关系将等差数列前n项和公式Snna1d整理成关于n的函数可得Snn2n.知识点三等差数列前n项和的。

17、2等差数列21等差数列第1课时等差数列的概念及通项公式学习目标1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题知识点一等差数列的定义一般地,如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,公差通常用字母d表示,可正可负可为零(1)求公差d时,可以用danan1(n2,nN)或dan1an(nN)(2)对于公差d,当d0时,数列为常数列;当d0时,数列为递增数列;当d0,则该数列为递增数列()4若三个数a,b,c满。

18、第2课时等差数列的性质一、选择题1在等差数列an中,a2a46,则a1a2a3a4a5等于()A30 B15 C5 D10答案B解析在等差数列an中,a2a46,a33,a1a2a3a4a55a315.故选B.2设数列an,bn都是等差数列,且a125,b175,a2b2100,则a37b37等于()A0 B37 C100 D37答案C解析a1b1100a2b2,anbn是常数列,a37b37100.3等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()A45 B75 C180 D300答案C解析a3a4a5a6a7(a3a7)(a4a6)a55a5450,a590.a2a82a5180.4已知等差数列an的公差为d(d0),且a3a6a10a1332,若am8,则m的值为(。

19、第2课时等差数列的性质学习目标1.了解等差中项的概念.2.能根据等差数列的定义推出等差数列的常用性质.3.能运用等差数列的性质解决有关问题知识点一等差数列的单调性与图像从函数角度研究等差数列的性质与图像由anf(n)a1(n1)ddn(a1d),可知其图像是直线ydx(a1d)上的一些等间隔的点,这些点的横坐标是正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d.当d0时,an为递增数列,如图甲所示当d0时,an为递减数列,如图乙所示当d0时,an为常数列,如图丙所示知识点二等差中项的概念如果在a与b中间插入一个数A,使a,A,b成等差数。

【2.1等差数列第2课时等差数列的性质 学案含答案】相关DOC文档
2.2等差数列的前n项和(第1课时)等差数列的前n项和公式 学案(含答案)
2.1等差数列(第1课时)等差数列的概念及通项公式 课时对点练(含答案)
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质 学案(含答案)
2.2等差数列的前n项和(第2课时)等差数列前n项和的性质 学案(含答案)
2.1等差数列(第1课时)等差数列的概念及通项公式 学案(含答案)
2.1等差数列(第2课时)等差数列的性质 课时对点练(含答案)
2.1等差数列(第2课时)等差数列的性质 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开