欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.2.2 向量的减法同步练习含答案

6.1 平面向量的概念平面向量的概念 一选择题 1.下列说法中,正确的个数是 时间摩擦力重力都是向量; 向量的模是一个正实数; 相等向量一定是平行向量; 向量 a 与 b 不共线,则 a 与 b 都是非零向量. A.1 B.2 C.3 D.,2.4向量的数量积(二) 基础过关 1.若a(2,1),b

2.2.2 向量的减法同步练习含答案Tag内容描述:

1、6.1 平面向量的概念平面向量的概念 一选择题 1.下列说法中,正确的个数是 时间摩擦力重力都是向量; 向量的模是一个正实数; 相等向量一定是平行向量; 向量 a 与 b 不共线,则 a 与 b 都是非零向量. A.1 B.2 C.3 D.。

2、2.4向量的数量积(二) 基础过关1.若a(2,1),b(1,1),则向量ab与ab的夹角的余弦值为()A. B. C. D.解析法一a(2,1),b(1,1),ab(1,2),ab(3,0),(ab)(ab)3,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .法二a(2,1),b(1,1),|a|,|b|,(ab)(ab)a2b2|a|2|b|2523,ab211,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .答案C2.已知向量a(1,2),b(2,3).若向量c满足(ca)b,c(ab),则c()A. B.C. D.解析设c(x,y),则ca(x1,y2),又(ca)b,2(y2)3(x1)0.又c(a。

3、2.1向量的概念及表示基础过关1.下列说法正确的是()A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一存在的C.|D单位向量的方向相同或相反解析零向量方向任意,A错误;单位向量由于方向不同,故有无数个,B、D错误,故只有C正确.答案C2.设b是a的相反向量,则下列说法中错误的是()A.ab B.a与b的长度相等C.a是b的相反向量 D.a与b一定不相等解析对于A,若两向量均为非零向量,则它们的模相等,方向相反,两向量共线;若两向量均为零向量,根据零向量的方向是任意的,两向量也可以理解为共线,故A正确;对于B,根据相反向量的概念,a与b的。

4、2.4向量的数量积(一) 基础过关1.已知向量a,b和实数,下列选项中错误的是()A.|a|2a2 B.|ab|a|b|C.(ab)ab D.|ab|a|b|解析选项B中,|ab|a|b|cos |,其中为a与b的夹角.答案B2.已知菱形ABCD的边长为a,ABC60,则等于()A.a2 B.a2 C.a2 D.a2解析由菱形ABCD的边长为a,ABC60可知BAD18060120,故()()2aacos 120a2a2.答案D3.已知|a|2,|b|3,a与b的夹角为120,则ab_.解析ab|a|b|cos 120233.。

5、1.3.21.3.2 有理数的减法有理数的减法 一选择题 1.一个数加3.6,和为0.36,那么这个数是 A.2.24 B.3.96 C.3.24 D.3.96 2.下列计算正确的是 A.145 9 B. 033 C.33 6 D.53 5。

6、2复数的四则运算21复数的加法与减法一、选择题1实数x,y满足z1yxi,z2yix,且z1z22,则xy的值是()A1 B2 C2 D12已知复数z1(a22)3ai,z2a(a22)i,若z1z2是纯虚数,那么实数a的值为()A1 B2C2 D2或13设复数z满足关系式z|z|2i,那么z等于()Ai B.iCi D.i4复数满足(a3i)(2i)5bi,则ab等于()A4 B7 C8 D55设f(z)|z|,z134i,z22i,则f(z1z2)等于()A. B5 C. D56在复平面内点A,B,C所对应的复数分别为13i,i,2i,若,则点D表示的复数是()A13i B3iC35i D53i7已知复数z对应的向量如图所示,则复数z1所对应的向量正确的是()二。

7、6.2.4 向量的数量积向量的数量积 A 组 素养自测 一选择题 1已知ABC 中,ABa,ACb,若 a b0,则ABC 是 A钝角三角形 B直角三角形 C锐角三角形 D任意三角形 2对于向量 abc 和实数 ,下列命题中真命题是 A若 。

8、6.2.1 向量的加法运算向量的加法运算 一选择题 1.已知 a,b,c 是非零向量,则acb,bac,bca,cab,cba中,与向量abc 相等的个数为 A.5 B.4 C.3 D.2 2.若向量 a 表示向东航行 1 km,向量 b 。

9、2.2.3向量的数乘基础过关1.若2(ya)(cb3y)b0,其中a,b,c为已知向量,则向量y()A.abc B.abcC.abc D.abc解析由2(cb3y)b0,得2yacbyb0,yabc,yabc.答案D2.在四边形ABCD中,3e,5e,且|,则四边形ABCD是()A.等腰梯形 B.矩形C.菱形 D.平行四边形解析,ABCD且ABCD,又|,四边形ABCD是等腰梯形.答案A3.已知a,b是不共线的向量,ab,ab(,R),那么A,B,C三点共线的条件是_.解析由ab,ab(,R)及A,B,C三点共线得:t,所以abt(ab)tatb,即可得所以1.答案14.若|a|3,b与a的方向相反,且|b|5,则a_b.解析由b与a方向相反,设ab(&。

10、2.1.2向量的加法基础过关1下列三个命题:若ab0,bc0,则ac;的等价条件是点A与点C重合,点B与点D重合;若ab0且b0,则a0.其中正确命题的个数是()A1 B2 C3 D0答案B解析中,ab0,a、b的长度相等且方向相反又bc0,b、c的长度相等且方向相反,a、c的长度相等且方向相同,故ac,正确中,当时,应有|及由A到B与由C到D的方向相同,但不一定要有点A与点C重合,点B与点D重合,故错显然正确2如图,在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa。

11、21向量的线性运算21.1向量的概念基础过关1有下列说法:若向量a与向量b不平行,则a与b方向一定不相同;若向量,满足|,且与同向,则;ab的充要条件是|a|b|且ab.其中,正确说法的个数是()A1B2C3D4答案A解析对于,由共线向量的定义知,两向量不平行,方向一定不相同,故正确;对于,因为向量不能比较大小,故错误;对于,由ab能推出|a|b|且ab,反过来,则不成立,故错误2给出下列五个命题:两个向量相等,则它们的起点相同,终点相同;若|a|b|,则ab;若,则四边形ABCD是正方形;平行四边形ABCD中,一定有;若mn,nk,则mk.其中不正确的命题。

12、2.5向量的应用基础过关1.点P在平面上做匀速直线运动,速度v(4,3),设开始时点P的坐标为(10,10),则5秒后点P的坐标为()A.(2,4) B.(30,25)C.(10,5) D.(5,10)解析5秒后点P的坐标为(10,10)5(4,3)(10,5).答案C2.已知点A(2,3),B(19,4),C(1,6),则ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形解析(21,7),(1,3),0,即,则A90,所以ABC是直角三角形.答案C3.已知点A(2,1),则过点A与向量b(1,2)垂直的直线方程为_.解析设所求直线上任意一点P的坐标为(x,y),A(2,1),(x2,y1).由题意知b,(x2)(1)(y1)20,即x。

13、2.2向量的线性运算2.2.1向量的加法基础过关1.已知下列各式:;();.其中结果为0的有()A.1个 B.2个 C.3个 D.4个解析0;()()()0;0;()()0.故结果为0的是.答案B2.如图所示,在平行四边形ABCD中,有以下四个等式:;0.其中正确的式子有()A.4个 B.3个 C.2个 D.1个解析由平行四边形法则知正确;错误,;错误,;正确,则0.答案C3.已知向量a表示“向东航行1 km”,向量b表示“向南航行1 km”,则向量ab表示_ km.解析由平行四边形法则可得ab表示向东南航行 km.答案向东南航行4.如图所示,在正六边形ABCDEF中,若AB1,则|_.解析|。

14、第二节第二节 群落的动态群落的动态 考查知识点及角度 难度及题号 基础 中档 稍难 群落的演替 1、2、3、5 4、6 8 群落的稳定性 7 9 一、选择题(共 7 小题,每小题 4 分,共 28 分) 1发生在裸岩上的演替过程中,地衣阶段的主要作用是( )。 A吸收光能,制造有机物 B保持土壤中的水分,使土壤的通气性越来越好 C分泌的有机酸可加速岩石风化形成土壤的过程 D为各种昆虫和其他小动物创造良好的生活环境 解析 地衣的主要作用:分泌的有机酸可加速岩石风化形成土壤的过程,为其他植物生长提 供环境。因此,也常把地衣称为先锋植物。 答案 C 2初生。

15、22.2向量的正交分解与向量的直角坐标运算基础过关1给出下面几种说法:相等向量的坐标相同;平面上一个向量对应于平面上唯一的坐标;一个坐标对应于唯一的一个向量;平面上一个点与以原点为始点,该点为终点的向量一一对应其中正确说法的个数是()A1 B2 C3 D4答案C解析由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故错误2已知向量a(2,4),b(1,1),则2ab等于()A(5,7) B(5,9)C(3,7) D(3,9)答案A解析2ab(4,8)(1,1)(5,7)3已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A2,1 B1,2C2,1 D1,2答案D解析由解得4已知M(。

16、2.2.2 向量减法运算及其几何意义向量减法运算及其几何意义 基础过关 1化简AB BD AC CD ( ) AAD BDA CBC D0 解析 AB BD AC CD (AB BD )(AC CD )AD AD 0 答案 D 2下列等式中,正确的个数为( ) 0aa;(a)a;a(a)0;a0a;aba(b);a( a)0 A3 B4 C5 D6 解析 根据相反向量的概念知正确,所以正确的。

17、6.2.2 向量的减法运算向量的减法运算 A 组组 基础题基础题 一选择题一选择题 1在平行四边形 ABCD 中,下列结论错误的是 AABDC0 BADBAAC CABADBD DADCB0 2在ABC 中,BCa,CAb,则AB等于 Aa。

18、21.3向量的减法基础过关1下列结论中,正确的是()A000B对于任意向量a,b,abbaC对于任意向量a,b,|ab|0D若向量,且|2,|2008,则|2010答案B2化简的结果等于()A. B. C. D.答案B3.可以写成:;,其中正确的是()ABCD答案D解析由向量的加法及减法定义可知4如图,D、E、F分别是ABC的边AB、BC、CA的中点,则()A.0B.0C.0D.0答案A解析()0.5在边长为1的正三角形ABC中,|的值为()A1 B2C. D.答案D解析作菱形ABCD,则|.6.如图所示,在梯形ABCD中,ADBC,AC与BD交于O点,则_.答案7已知O为平行四边形A。

19、2.2.2向量的减法学习目标1.理解向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算知识点向量的减法1.向量减法的定义若bxa,则向量x叫做a与b的差,记为ab,求两个向量差的运算,叫做向量的减法2向量的减法法则以O为起点,作向量a,b,则ab,即当向量a,b起点相同时,从b的终点指向a的终点的向量就是ab.思考若a,b是不共线向量,|ab|与|ab|的几何意义分别是什么?答案如图所示,设a,b.根据向量加法的平行四边形法则和向量减法的三角形法则,有ab,ab.因为四边形OACB是平行四边形,所以|ab|,|ab|,分别是。

20、2.2.2向量的减法基础过关1.在平行四边形ABCD中,下列结论错误的是()A.0 B.C D.0解析,0,A正确;,B正确;,C错误;,0,D正确.答案C2.已知O是四边形ABCD所在平面内的一点,且满足,则四边形ABCD的形状是()A.梯形 B.平行四边形C.矩形 D.菱形解析,BA綊CD,四边形ABCD是平行四边形.答案B3.如图,在矩形ABCD中,O是对角线AC与BD的交点,若a,b,c,则a(bc)_.解析a(bc)()()()c.答案c4.如图,在四边形ABCD中,根据图示填空(用小写字母表示):ab_,bc_,cd_,abcd_.解析abf;bce;cdf;a。

【2.2.2 向量的减法同步练习含答案】相关DOC文档
6.1平面向量的概念 同步练习(含答案)
2.4 向量的数量积(二)同步练习(含答案)
《2.1 向量的概念及表示》同步练习(含答案)
2.4 向量的数量积(一)同步练习(含答案)
1.3.2有理数的减法 同步练习(含答案)
2.1 复数的加法与减法 同步练习(含答案)
6.2.4向量的数量积 同步练习(含答案)
6.2.1向量的加法运算 同步练习(含答案)
《2.2.3 向量的数乘》同步练习(含答案)
《2.1.2 向量的加法》同步练习(含答案)
《2.1.1 向量的概念》同步练习(含答案)
《2.5 向量的应用》同步练习(含答案)
《2.2.1 向量的加法》同步练习(含答案)
2.2.2 群落的动态 同步练习(含答案)
《2.2.2 向量的正交分解与向量的直角坐标运算》同步练习(含答案)
2.2.2 向量减法运算及其几何意义 课时练习(含答案)
6.2.2向量的减法运算 同步练习(含答案)
《2.1.3 向量的减法》同步练习(含答案)
2.2.2 向量的减法 学案(含答案)
《2.2.2 向量的减法》同步练习(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开