第 20 课时 向量的数乘运算及其几何意义课时目标1.理解向量数乘的定义及规定,掌握向量数乘的几何意义2掌握向量数乘的运算法则,会应用法则进行有关计算识记强化1向量数乘的运算律(1)()a(a);(2)()aa a;(3)(a b)ab.2共线向量定理向量 a(a0) 与 b 共线,当且仅当存在唯一
2.2.3 向量数乘运算及其几何意义 课时练习含答案Tag内容描述:
1、第 20 课时 向量的数乘运算及其几何意义课时目标1.理解向量数乘的定义及规定,掌握向量数乘的几何意义2掌握向量数乘的运算法则,会应用法则进行有关计算识记强化1向量数乘的运算律(1)()a(a);(2)()aa a;(3)(a b)ab.2共线向量定理向量 a(a0) 与 b 共线,当且仅当存在唯一实数 ,使 ba.课时作业一、选择题1已知 R,则下列命题正确的是( )A|a|a| B| a| |aC|a| |a| D| a|0答案:C解析:当 0 时,| a| a|不成立,A 错误;| a|是一个非负实数,而 |a 是一个向量,所以 B 错误;当 0 或 a 0 时,|a| 0,D 错误故选 C.2已知 a5b, 2a8b, 3( ab)。
2、2.2.2 向量减法运算及其几何意义向量减法运算及其几何意义 基础过关 1化简AB BD AC CD ( ) AAD BDA CBC D0 解析 AB BD AC CD (AB BD )(AC CD )AD AD 0 答案 D 2下列等式中,正确的个数为( ) 0aa;(a)a;a(a)0;a0a;aba(b);a( a)0 A3 B4 C5 D6 解析 根据相反向量的概念知正确,所以正确的。
3、 2.2 平面向量的线性运算平面向量的线性运算 2.2.1 向量加法运算及其几何意义向量加法运算及其几何意义 基础过关 1下列等式错误的是( ) Aa00aa BAB BCAC0 CAB BA0 DCA ACMN NP PM 解析 AB BCACACAC2AC0,故 B 错 答案 B 2如图所示,在四边形 ABCD 中,AC ABAD ,则四边形 ABCD 为( ) A矩形 B正方形 C平行四。
4、A 级 基础巩固一、选择题1下列各式计算正确的个数是( )(7)6a42a;a2b2(ab) 3a;ab( ab)0.A0 B1C2 D3解析:根据向量数乘的运算律可验证正确;错误,因为向量的和、差及数乘运算的结果仍为一个向量,而不是实数答案:C2如图,在ABC 中,点 D 是边 AB 的中点,则向量 ( )DC A. B. 12BA BC 12BA BC C D 12BA BC 12BA BC 解析:因为 D 是 AB 的中点,所以 ,BD 12BA 所以 .DC BC BD BC 12BA 答案:D3已知非零向量 a,b,且 a2b, 5a6b, 7a2b,则一定共线AB BC CD 的三点是( )AA,B ,D BA,B,CCB,C,D DA,C ,D解析:因为 a2b, 5a6b, 7a2。
5、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 一、选择题 1下列说法中正确的是( ) Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若|b|2|a|,则 b 2a D若 b 2a,则|b|2|a| 考点 向量数乘的定义及运算 题点 向量数乘的定义及几何意义 答案 D 解析 显然当 b 2a 时,必有|b|2|a|. 23(2a4b)等于( ) A5a7b B。
6、22.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运 算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法, 并能熟练地运用这些知识处理有关共线向量问题 知识点一 向量数乘的定义 实数 与向量 a 的积是一个向量,这种运算叫做向量的数乘,记作 a,其长度与方向规定如 下: 。
7、2.2.3 向量数乘运算及其几何意义向量数乘运算及其几何意义 基础过关 1将 1 122(2a8b)4(4a2b)化简成最简形式为( ) A2ab B2ba Cab Dba 解析 原式 1 12(4a16b16a8b) 1 12(24b12a)2ba 答案 B 2在ABC 中,已知 D 是 AB 边上的一点,若AD 2DB ,CD 1 3CA CB,则 等于 ( ) A1 3 B2 3 C1 2 。