欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.3.2 向量数量积的运算律同步练习含答案

课时作业(十一)2.3 第 2 课时 有理数的乘法运算律 一、选择题1在计算 (48) 时,可以避免通分的运算律是( )(112 78 12)A加法交换律 B乘法交换律C分配律 D加法结合律2下列计算正确的是( )A5(4)( 2)(2)542280B(12) 4310(13 14 1)C(9)5(

2.3.2 向量数量积的运算律同步练习含答案Tag内容描述:

1、课时作业(十一)2.3 第 2 课时 有理数的乘法运算律 一、选择题1在计算 (48) 时,可以避免通分的运算律是( )(112 78 12)A加法交换律 B乘法交换律C分配律 D加法结合律2下列计算正确的是( )A5(4)( 2)(2)542280B(12) 4310(13 14 1)C(9)5(4) 0954180D252(1)( 2)22(512) 83计算 时,比较简单的运算顺序是 ( )( 227) ( 457) ( 716)A按式子中从左到右的顺序计算B. ( 227)( 716) ( 457)C. ( 227) ( 457)( 716)D. ( 716)。

2、2.3.2平面向量的坐标运算(二) 基础过关1.已知a(1,2),b(2,y),若ab,则y的值是()A.4 B.4 C.2 D.2解析ab,(1)y220,y4.答案B2.若a(2cos ,1),b(sin ,1),且ab,则tan 等于()A.2 B. C.2 D.解析ab,2cos 1sin .tan 2.答案A3.设向量a(1,2),b(2,3),若向量ab与向量c(5,6)共线,则的值为_.解析由已知得ab(12,23),向量ab与向量c(5,6)共线,(12)(6)(23)(5)0,解得.答案4.已知向量a(1,2),b(0,1),设uakb,v2ab,若uv,则实数k的值为_.解析u(1,2)k(0,1)(1,2k),v。

3、2.3.2平面向量的坐标运算(一) 基础过关1.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则12的值为()A.3 B.1 C.1 D.3解析由1a2b(122,2132),c(3,4),c1a2b,得解得121.答案B2.在平行四边形ABCD中,AC为一条对角线.若(2,4),(1,3),则为()A.(2,1) B.(3,2)C.(2,5) D.(3,5)解析,(1,1).(3,5).答案D3.已知点A(1,5),向量a(1,2),若3a,则点B的坐标是_.解析设B(x,y),则由3a,得(x1,y5)(3,6),解得x4,y11,所以点B的坐标是(4,11).答案(4,11)4.分别取i,j为x轴、y轴正方向上的单位向量,已知向量xiyj,点B和点A关于x轴对称,。

4、6.3.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 A 组 基础巩固练 一选择题 1已知平面向量 a1,m,b2,5,cm,0,且acab,则 m A3 10 B3 10 C3 10 D3 10 2a4,3,b5,6,则 3a24。

5、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。

6、2.4向量的数量积(二) 基础过关1.若a(2,1),b(1,1),则向量ab与ab的夹角的余弦值为()A. B. C. D.解析法一a(2,1),b(1,1),ab(1,2),ab(3,0),(ab)(ab)3,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .法二a(2,1),b(1,1),|a|,|b|,(ab)(ab)a2b2|a|2|b|2523,ab211,|ab|,|ab|3,ab与ab的夹角的余弦值为cos .答案C2.已知向量a(1,2),b(2,3).若向量c满足(ca)b,c(ab),则c()A. B.C. D.解析设c(x,y),则ca(x1,y2),又(ca)b,2(y2)3(x1)0.又c(a。

7、2.4向量的数量积(一) 基础过关1.已知向量a,b和实数,下列选项中错误的是()A.|a|2a2 B.|ab|a|b|C.(ab)ab D.|ab|a|b|解析选项B中,|ab|a|b|cos |,其中为a与b的夹角.答案B2.已知菱形ABCD的边长为a,ABC60,则等于()A.a2 B.a2 C.a2 D.a2解析由菱形ABCD的边长为a,ABC60可知BAD18060120,故()()2aacos 120a2a2.答案D3.已知|a|2,|b|3,a与b的夹角为120,则ab_.解析ab|a|b|cos 120233.。

8、6.2.4 向量的数量积向量的数量积 A 组 素养自测 一选择题 1已知ABC 中,ABa,ACb,若 a b0,则ABC 是 A钝角三角形 B直角三角形 C锐角三角形 D任意三角形 2对于向量 abc 和实数 ,下列命题中真命题是 A若 。

9、第2课时平面向量数量积的坐标运算学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示若向量a(x1,y1),b(x2,y2).数量积abx1x2y1y2向量垂直abx1x2y1y20知识点二平面向量的模向量的模及两点间的距离向量模a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量的夹角设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,则cos .。

10、2.3.3向量数量积的坐标运算与度量公式基础过关1已知向量a(2,1),b(1,k),a(2ab)0,则k等于()A12 B6C6 D12答案D解析由已知得a(2ab)2a2ab2(41)(2k)0,k12.2已知a(3,2),b(1,0),向量ab与a2b垂直,则实数的值为()A B.C D.答案A解析由a(3,2),b(1,0),知ab(31,2),a2b(1,2)又(ab)(a2b)0,3140,.3已知点A(1,1)、B(1,2)、C(2,1)、D(3,4),则向量在方向上的正射影为()A. B.C D答案A解析因为(2,1),(5,5),所以(2,1)(5,5)15,|5.。

11、1 11.21.2 空间向量的数量积运算空间向量的数量积运算 1已知向量 a 和 b 的夹角为 120 ,且|a|2,|b|5,则(2ab) a 等于( ) A12 B8 13 C4 D13 答案 D 解析 (2ab) a2a2b a2|a|2|a|b|cos 120 2425 1 2 13. 2 已知两异面直线的方向向量分别为 a, b, 且|a|b|1, a b1 2, 则两直线的夹角。

12、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律一、选择题1.已知|a|3,|b|4,且a与b的夹角150,则ab等于()A.6 B.6 C.6 D.6答案C2.已知|a|9,|b|6,ab54,则a与b的夹角为()A.45 B.135 C.120 D.150答案B解析cos ,又0180,135.3.已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4.若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的正射影的数量等于()A.3 。

13、2.3.2向量数量积的运算律一、基础达标1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b。

14、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式.知识点一向量的夹角两个向量夹角的定义(1)已知两个非零向量a,b,作a,b,则AOB称作向量a和向量b的夹角,记作a,b,并规定它的范围是0a,b.在这个规定下,两个向量的夹角被唯一确定了,并且有a,bb,a.(2)当a,b时,我。

15、23.2向量数量积的运算律学习目标1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确.运算律实数乘法向量数量积判断正误交换律abbaabba正确结合律(ab)ca(bc)(ab)ca(bc)错误分配律(ab)cacbc(ab)cacbc正确消去律abbc(b0)acabbc(b0)ac错误知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质.多项式乘法向量数量积(ab)2a22abb2(ab)2a22abb2(ab)2a22abb2(ab)2。

16、2.3.2向量数量积的运算律基础过关1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b|。

【2.3.2 向量数量积的运算律同步练习含答案】相关DOC文档
2018年秋浙教版七年级数学上册《2.3.2有理数的乘法运算律》同步练习含答案
2.3.2 平面向量的坐标运算(二)同步练习(含答案)
2.3.2 平面向量的坐标运算(一)同步练习(含答案)
6.3.5平面向量数量积的坐标表示 同步练习(含答案)
2.4 向量的数量积(二)同步练习(含答案)
2.4 向量的数量积(一)同步练习(含答案)
6.2.4向量的数量积 同步练习(含答案)
《2.3.3 向量数量积的坐标运算与度量公式》同步练习(含答案)
1.1.2 空间向量的数量积运算 同步练习(含答案)
《2.3.2 向量数量积的运算律》课时对点练(含答案)
2.3.1 向量数量积的物理背景与定义-2.3.2 向量数量积的运算律 学案(含答案)
2.3.2 向量数量积的运算律 学案(含答案)
《2.3.2 向量数量积的运算律》同步练习(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开