4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系【课时目标】 1能根据给定直线和圆的方程,判断直线和圆的位置关系2能根据直线与圆的位置关系解决有关问题直线 AxBy C0 与圆(xa) 2( yb) 2r 2 的位置关系及判断位置关系 相交 相切 相离公共点个数 _个 _个 _个几何法:设圆
2.3 第2课时 圆与圆的位置关系 课时作业含答案Tag内容描述:
1、4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系【课时目标】 1能根据给定直线和圆的方程,判断直线和圆的位置关系2能根据直线与圆的位置关系解决有关问题直线 AxBy C0 与圆(xa) 2( yb) 2r 2 的位置关系及判断位置关系 相交 相切 相离公共点个数 _个 _个 _个几何法:设圆心到直线的距离d|Aa Bb C|A2 B2 d_r d_r d_r判定方法 代数法:由Error!消元得到一元二次方程的判别式 _0 _0 _0一、选择题1直线 3x4y 120 与C :( x1) 2(y1) 29 的位置关系是 ( )A相交并且过圆心 B相交不过圆心C相切 D相离2已知圆 x2y 2DxEyF0 与 y 轴切于原点,那么( 。
2、 第六单元 圆第 24 课时 与圆有关的位置关系基础达标训练1. (2017 广州 )如图,O 是ABC 的内切圆,则点 O 是ABC的( )A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点第 1 题图2. (2016 河北) 如图为 44 的网格图,A,B,C ,D ,O 均在格点上,点 O 是( )第 2 题图A. ACD 的外心 B. ABC 的外心C. ACD 的内心 D. ABC 的内心3. (2017 安徽模拟)如图,ABC 内接于O ,C 30,AB4,则 O 的半径为 ( )A. 2 B. 4 C. 2 D. 52 3第 3 题图4. (2017 长春) 如图,点 A、B 、C 在O 上,ABC 29,过点C 作 O 的切线交 。
3、,第2课时 与圆有关的位置关系,考点突破,3,中考特训,4,广东中考,5,课前小测,D,1已知O的半径为2,直线l上有一点P满足PO2,则直线l与O的位置关系是( ) A相切 B相离 C相离或相切 D相切或相交,课前小测,D,2(2019哈尔滨) 如图,PA、PB分别与O相切于A、B两点,点C为O上一点,连接AC、BC,若P50,则ACB的度数为( ) A60 B75 C70 D65 第2题图,课前小测,B,3(2019福建) 如图,PA、PB是O切线, A、B为切点,点C在O上,且ACB55, 则APB等于( ) A55 B70 C110 D125 第3题图,课前小测,27,4(2018眉山) 如图所示,AB是O的直径,PA切O于点A,线段PO交O于点C,。
4、第2课时直线与圆的位置关系(习题课)一、选择题1.过点(2,1)的直线中,被圆x2y22x4y0截得的弦最长的直线的方程是()A.3xy50 B.3xy70C.3xy10 D.3xy50答案A解析x2y22x4y0的圆心为(1,2),过点(2,1)的直线中,截得弦最长的直线必过点(2,1)和圆心(1,2),直线方程为3xy50,故选A.2.圆x2y24x4y60截直线xy50所得的弦长等于()A. B. C.1 D.5答案A解析圆的方程可化为(x2)2(y2)22,则圆的半径r,圆心(2,2)到直线的距离d,所以直线被圆截得的弦长为22.3.已知直线l:3x4ym0(m0)被圆C:x2y22x2y60截得的弦长是圆心C到直线l的距离的2倍,则m等于()A.6 B.8 。
5、第二课时第二课时 直线与圆的位置关系的应用直线与圆的位置关系的应用 课标要求 素养要求 1.能用直线和圆的方程解决一些简单的数学 问题与实际问题. 2.会用数形结合的数学思想解决问题. 通过直线与圆的位置关系的应 用,提升直观想象数学运算及。
6、2.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2.5.1 直线与圆的位置关系直线与圆的位置关系 第一课时第一课时 直线与圆的位置关系直线与圆的位置关系 一选择题 1.已知点 Ma,b在圆 O:x2y21 外,则直线 axby1 。
7、2.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2.5.1 直线与圆的位置关系直线与圆的位置关系 第一课时第一课时 直线与圆的位置关系直线与圆的位置关系 课标要求 素养要求 1.能根据给定直线圆的方程判断直线 与圆的位置关系. 2。
8、第第 2 2 课时课时 直线与圆的方程的应用直线与圆的方程的应用 1yx的图象和圆 x2y24 在 x 轴上方所围成的图形的面积是 A.4 B.34 C.32 D 答案 D 解析 数形结合,所求面积是圆 x2y24 面积的14. 2已知圆 。
9、第 30 课时 直线与圆的位置关系(60 分)一、选择题(每题 5 分,共 25 分)1O 的半径为 7 cm,圆心 O 到直线 l 的距离为 8 cm,则直线 l 与O 的位置关系是 (D)A相交 B内含C相切 D相离22016重庆 如图 301,AC 是O 的切线,切点为 C,BC 是O 的直径,AB 交O 与点 D,连结 OD,若BAC55,则COD 的大小为 (A)A70 B60C55 D35【解析】 AC 是O 的切线,ACB90.BAC55,B35,COD70 .故选 A.图 301 &。
10、第2课时 圆与圆的位置关系,第二章 2.3 直线与圆、圆与圆的位置关系,学习目标 1.理解圆与圆的位置关系的种类. 2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系. 3.体会根据圆的对称性灵活处理问题的方法和它的优越性.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 两圆位置关系的判定,思考 圆与圆的位置关系有几种?如何判断圆与圆的位置关系? 答案 圆与圆的位置关系有五种,分别为:相离、外切、相交、内切、内含.可根据圆心距与两圆半径的和差关系判定.,梳理 两圆位置关系的判定两圆。
11、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 课时课时对点对点练练 1直线 3x4y120 与圆x12。
12、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线与圆的三种位置关系及判定位置关系相离相切相交图示几何法比较d与r的大小drdrdr代数法依据方程组解的情况方程组无解方程组只有一组解方程组有两组不同解一、直线与圆的位置关系的判断例1求实数m的取值范围,使直线xmy30与圆x2y26x50分别满足:相交;相切;相离.解圆的方程化为标准形式为(x3)2y24,故圆心(3,0)到直线xmy3。
13、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 1直线 3x4y120 与圆x12y129 的位置关系是。
14、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离为ddr代数法:由消元得到一元二次方程,可得方程的判别式0001.若直线与圆有公共点,则直线与圆相交.()2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.()3.若圆心到直线的距离大于半径,。
15、第2课时圆与圆的位置关系学习目标 1掌握圆与圆的位置关系及判定方法2能利用直线与圆的位置关系解决简单的实际问题3体会用代数方法处理几何问题的思想知识链接1判断直线与圆的位置关系的两种方法为代数法、几何法2两圆的位置关系有外离、外切、相交、内切、内含预习导引1圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1,r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二。
16、73.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系基础过关1以(2,1)为圆心且与直线3x4y50相切的圆的标准方程为()A(x2)2(y1)23 B(x2)2(y1)23C(x2)2(y1)29 D(x2)2(y1)29答案C解析根据题意知点(2,1)到直线3x4y50的距离与半径长相等,所以r3,所以所求圆的标准方程为(x2)2(y1)29.2圆x2y24上的点到直线xy20的距离的最大值为()A2 B2C. D0答案A解析圆心(0,0)到直线xy20的距离d,所求最大距离为2.3直线l:y1k(x1)和圆x2y22y0的关系是()A相离 B相切或相交C相交 D相切答案C解析l过定点A(1,1),1212210,点A在圆上直线x1过点A且为圆的切。
17、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系一、选择题1.直线3x4y250与圆x2y29的位置关系为()A.相切 B.相交C.相离 D.相离或相切考点直线与圆的位置关系题点判断直线与圆的位置关系答案C2.若直线3x4ym0与圆x2y22x4y10没有公共点,则实数m的取值范围是()A.515C.m13 D.42,m15.故选B.3.已知圆x2y29的弦过点P(1,2),当弦长最短时,该弦所在直线的方程为()A.y20 B.x2y50C.2xy0 D.x10答案B解析当弦。
18、第2课时圆与圆的位置关系学习目标1.理解圆与圆的位置关系的种类.2.掌握圆与圆的位置关系的代数判定方法与几何判定方法,能够利用上述方法判定两圆的位置关系.3.体会根据圆的对称性灵活处理问题的方法和它的优越性.知识点两圆位置关系的判定已知两圆C1:(xx1)2(yy1)2r,C2:(xx2)2(yy2)2r,则圆心距d|C1C2|.两圆C1,C2有以下位置关系:位置关系公共点个数圆心距与半径的关系图示两圆相离0个dr1r2两圆内含d|r1r2|两圆相交2个|r1r2|dr1r2两圆内切1个d|r1r2|两圆外切dr1r21.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()2.如果。
19、第2课时圆与圆的位置关系基础过关1圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切 B相交C外切 D相离答案B解析两圆圆心分别为(2,0),(2,1),半径长分别为2和3,圆心距d.32d32,两圆相交2圆C1:x2y22x2y20和圆C2:x2y24x2y10的公切线的条数为()A1 B2 C3 D4答案B解析圆C1:(x1)2(y1)24,圆心C1(1,1),半径长r12,圆C2:(x2)2(y1)24,圆心C2(2,1),半径长r22,两圆圆心距为|C1C2|,显然0|C1C2|4,即|r1r2|C1C2|r1r2,所以两圆相交,从而两圆有两条公切线3一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距。
20、第2课时圆与圆的位置关系一、选择题1.圆(x3)2(y2)21与圆x2y214x2y140的位置关系是()A.外切 B.内切 C.相交 D.相离考点圆与圆的位置关系题点判断两圆的位置关系答案B解析圆x2y214x2y140变形为(x7)2(y1)236,圆心坐标为(7,1),半径为r16,圆(x3)2(y2)21的圆心坐标为(3,2),半径为r21,所以圆心距d561r1r2,所以两圆内切.2.圆x2y21与圆x2y22x2y10的交点坐标为()A.(1,0)和(0,1) B.(1,0)和(0,1)C.(1,0)和(0,1) D.(1,0)和(0,1)答案C解析由解得或所以两圆的交点坐标为(1,0)和(0,1).3.圆x2y24与圆(x4)2(y7)21公切线的条数为()A.1 B.2 C.3 D.4考。