欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2.4向量的数量积第1课时向量的数量积

第 24 课时 平面向量数量积的物理背景及其含义课时目标1.理解平面向量数量积的含义;了解平面向量数量积与投影的关系;掌握数量积的性质2掌握平面向量数量积的几何意义;掌握平面向量数量积的运算律识记强化1已知两个非零向量 a,b,我们把|a| b|cos 叫做 a 与 b 的数量积(或内积) ,记作a

2.4向量的数量积第1课时向量的数量积Tag内容描述:

1、第 24 课时 平面向量数量积的物理背景及其含义课时目标1.理解平面向量数量积的含义;了解平面向量数量积与投影的关系;掌握数量积的性质2掌握平面向量数量积的几何意义;掌握平面向量数量积的运算律识记强化1已知两个非零向量 a,b,我们把|a| b|cos 叫做 a 与 b 的数量积(或内积) ,记作ab| a|b|cos.规定零向量与任一向量的数量积为零,其中 是 a 与 b 的夹角2|a|cos 叫做向量 a 在 b 方向上的投影, |b|cos 叫做 b 在 a 方向上的投影3两个非零向量互相垂直的等价条件是 ab0.4ab 的几何意义是数量积 ab 等于 a 的长度| a|与 b 在 a 方向。

2、第 25 课时 平面向量的数量积的坐标表示、模、夹角课时目标1.掌握向量数量积的坐标表示,会进行向量数量积的坐标运算2会用坐标运算求向量的模,并会用坐标运算判断两个向量是否垂直3能运用数量积的坐标求出两个向量夹角的余弦值识记强化1若 a(x 1,y 1),b( x2,y 2),则 abx 1x2y 1y2.2若有向线段 ,A (x1,y 1),B(x 2,y 2),则 | ;若AB |AB x2 x12 y2 y12 (x,y) ,则| | .AB AB x2 y23若 a(x 1,y 1),b( x2,y 2),则 ab x1x2y 1y20.4两向量 a(x 1,y 1),b(x 2,y 2),则求两向量的夹角 的公式为cos .x1x2 y1y2x21 y21 x2 y2课时。

3、课时跟踪训练( 二十二) 空间向量的数量积1已知 A(2, 5,1),B(2,2,4),C(1,4,1) ,则向量 与 的夹角为ABC_2已知|a| 2, |b|3, a, b60 ,则|2a3b|_.3若 (4,6,1), (4,3,2) ,|a|1,且 a ,a ,则Aa_.4已知 a(1,1,0),b(0,1,1),c(1,0,1) ,pab,qa2bc,则pq_.5如图,120的二面角的棱上有 A,B 两点,直线 AC,BD 分别在两个半平面内,且都垂直于 AB.若 AB4,AC6,BD 8,则CD 的长为 _6已知 a(1,5,1),b(2,3,5) (1)若(kab) ( a3b),求 k 的值;(2)若(kab) ( a3b。

4、6.2.4 向量的数量积向量的数量积 第一课时第一课时 向量的数量积向量的数量积一一 基础达标 一选择题 1.已知ABCD 中,DAB60 ,则AD与CD的夹角为 A.30 B.60 C.120 D.150 解析 如图,AD与CD的夹角为A。

5、第二课时第二课时 向量的数量积向量的数量积 二二 基础达标 一选择题 1.设非零向量 a,b,c 满足abc,abc,则 a 与 b 的夹角 为 A.150 B.120 C.60 D.30 解析 由abc且 abc,得abb, 平方得a2b。

6、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。

7、第2课时 平面向量数量积的坐标运算,第2章 2.4 向量的数量积,学习目标 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算. 2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式. 3.能根据向量的坐标求向量的夹角及判定两个向量垂直.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量数量积的坐标表示,思考1,ii,jj,ij分别是多少?,答案 ii11cos 01,jj11cos 01,ij0.,答案,设i,j是两个互相垂直且分别与x轴、y轴的正半轴同向的单位向量.,思考2,取i,j为坐标平面内的一组基。

8、第2课时平面向量数量积的坐标运算学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直知识点一平面向量数量积的坐标表示若向量a(x1,y1),b(x2,y2).数量积abx1x2y1y2向量垂直abx1x2y1y20知识点二平面向量的模向量的模及两点间的距离向量模a(x,y)|a|以A(x1,y1),B(x2,y2)为端点的向量|知识点三向量的夹角设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,则cos .。

9、第1课时 向量的数量积,第2章 2.4 向量的数量积,学习目标 1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功. 2.掌握平面向量数量积的定义和运算律,了解其几何意义. 3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量的数量积,思考1,如何计算这个力所做的功?,答案 W|F|s|cos .,答案,一个物体在力F的作用下产生位移s,如图.,思考2,力做功的大小与哪些量有关?,答案 与力的大小、位移的大小及它们之间的夹角有关.,平面向量的数量积 。

10、第2课时向量平行的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法知识点向量平行的坐标表示1向量平行的坐标表示(1)条件:a(x1,y1),b(x2,y2),a0.(2)结论:如果ab,那么x1y2x2y10;如果x1y2x2y10,那么ab.2若,则P与P1,P2三点共线(1)当(0,)时,P位于线段P1,P2的内部,特别地,当1时,P为线段P1P2的中点(2)当(,1)时,P在线段P1P2的延长线上(3)当(1,0)时,P在线段P1P2的反向延长线上1若向量a(x1,y1),b(x2,y2),且ab,则.()提示当y1y20时不成立2若向量a。

11、2.4向量的数量积第1课时向量的数量积一、选择题1已知|a|3,|b|4,且a与b的夹角150,则ab等于()A6 B6 C6 D6考点平面向量数量积的运算性质与法则题点数量积运算与求值答案C2已知a,b方向相同,且|a|2,|b|4,则|2a3b|等于()A16 B256 C8 D64考点平面向量数量积的应用题点利用数量积求向量的模答案A解析|2a3b|24a29b212ab1614496256,|2a3b|16.3设非零向量a,b,c满足|a|b|c|,abc,则a与b的夹角为()A150 B120 C60 D30考点平面向量数量积的应用题点利用数量积求向量的夹角答案B解析由|a|b|c|且abc,得|ab|b|,平方得|a|2|b|22a。

12、2.4向量的数量积第1课时向量的数量积学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义和运算律,了解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式知识点一平面向量的数量积1已知两个非零向量a和b,它们的夹角是,我们把数量|a|b|cos 叫做向量a与b的数量积(或内积),记作ab,即ab|a|b|cos .2规定:零向量与任一向量的数量积为0.特别提醒:两个向量的数量积是一个数量,而不是向量,其大小与两个向量的。

【2.4向量的数量积第1课时向量的数量积】相关PPT文档
苏教版高中数学必修四课件:2.4 第2课时 平面向量数量积的坐标运算
苏教版高中数学必修四课件:2.4 第1课时 向量的数量积
【2.4向量的数量积第1课时向量的数量积】相关DOC文档
6.2.4(第一课时)向量的数量积(一)课后作业(含答案)
6.2.4(第二课时)向量的数量积(二)课后作业(含答案)
2.4向量的数量积(第2课时)向量平行的坐标表示 学案(含答案)
《2.4向量的数量积(第1课时)向量的数量积》课时对点练(含答案)
2.4向量的数量积(第1课时)向量的数量积 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开