22.2.4 一元二次方程根的判别式,第22章 一元二次方程,驶向胜利的彼岸,思考:一元二次方程ax2+bx+c=0的根有哪几种情况?,复习导入,一元二次方程 的根有三种情况: 有两个不相等的实数根; 有两个相等的实数根; 没有实数根而根的情况,由 的值来确定 因此 叫做一元二次方程的根的判别式,探
2.4一元二次方程根与系数的关系ppt课件湘教版九年级上册Tag内容描述:
1、22.2.4 一元二次方程根的判别式,第22章 一元二次方程,驶向胜利的彼岸,思考:一元二次方程ax2+bx+c=0的根有哪几种情况?,复习导入,一元二次方程 的根有三种情况: 有两个不相等的实数根; 有两个相等的实数根; 没有实数根而根的情况,由 的值来确定 因此 叫做一元二次方程的根的判别式,探索新知,0方程有两个不相等的实根 0方程有两个相等的实数根 0方程没有实数根,结论:,例1 不解方程,判别下列方程的根的情况:,掌握新知,解:,(1)a3,b-5,c2, 方程有两个不相等的实数根,(2)a4,b2,c , 方程有两个相等的实数解,(3)将方程化为一般形式。
2、思维特训(七) 一元二次方程根与系数关系的运用技巧一元二次方程 ax2bx c 0(a0)的两实数根分别是 x1,x 2,则 x1x 2 ,x 1x2 .ba ca这是一元二次方程根与系数的关系,运用这一关系可解决下列问题:(1)已知方程的一个根,求另一个根方法:利用两根之和或两根之积列方程求解;(2)求与两根有关的代数式的值方法:将所给的代数式变形,使其出现两根之和或两根之积;(3)求方程中字母系数的值方法:根据已知条件并借助根与系数的关系列出关于字母系数的方程或不等式;(4)求作方程方法:逆用根与系数的关系确定一次项系数及常数项类型一 已知一根。
3、2.5 2.5 一元二次方程的应用一元二次方程的应用 第第2 2章章 一元二次方程一元二次方程 重重、难点难点 重点:重点:熟练地应用一元二次方程解决实际问题熟练地应用一元二次方程解决实际问题. . 难点难点:从实际问题中建立一元二次方程的模型从实际问题中建立一元二次方程的模型. . 新课引入新课引入 某省农作物秸秆资源巨大,但合理使用量十分有限,某省农作物秸秆资源巨大,但合理使用量十分有。
4、一元二次方程二:根的判别式及根与系数的关系一元二次方程二:根的判别式及根与系数的关系 1. 若关于 x 的一元二次方程 2 1220axx 有实数根, 则整数 a 的最大值为 A1 B0 C1 D2 2.1 052 2 xx 2 015 2。
5、21.2.4 一元二次方程的根与系数的关系01 基础题知识点 1 利用根与系数的关系求两根之间关系的代数式的值1(钦州中考)若 x1,x 2 是一元二次方程 x210x160 的两个根,则 x1x 2 的值是(A)A10 B10 C16 D162(怀化中考)若 x1,x 2 是一元二次方程 x22x30 的两个根,则 x1x2 的值是(D)A2 B2 C4 D33(凉山中考)已知 x1,x 2 是一元二次方程 3x262x 的两根,则 x1x 1x2x 2 的值是(D)A B. C D.43 83 83 434(眉山中考)已知一元二次方程 x23x20 的两个实数根为 x1,x 2,则(x 11)(x 21) 的值是45已知 x1,x 2 是一元二次。
6、17.4 一元二次方程的根与 系数的关系,第17章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.探索一元二次方程的根与系数的关系.(难点) 2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点),导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实。
7、*21.2.4 一元二次方程的根与系数的关系基础闯关全练拓展训练1.设 x1,x2 是方程 2x2-6x+3=0 的两根,则 + 的值是( )2122A.15 B.12 C.6 D.32.(2017 河北模拟)设 x1,x2 是方程 x2-4x+m=0 的两个根, 且 x1+x2-x1x2=1,那么 m 的值为( )A.2 B.-3 C.3 D.-23.一元二次方程 x2+mx+2m=0 的两个实根分别为 x1,x2,若 x1+x2=1,则方程的两根为 . 4.若一元二次方程 x2-x-1=0 的两根分别为 x1、x 2,则 + = . 1112能力提升全练拓展训练1.(2017 天津南开模拟)甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3 和 5,乙把常数。
8、2018-2019 学年度北师大版数学九年级上册同步练习2.5 一元二次方程的根与系数的关系一选择题(共 10 小题)1下列方程一定有实根的是( )Ax 24x+3=0 Bx 24x+5=0 Cy 24y+c=0 Dy 24y+12=02下列一元二次方程中,没有实数根的是( )Ax 22x=0 Bx 2+4x1=0 C2x 24x+3=0 D3x 2=5x23若关于 x 的一元二次方程 x(x+1)+ax=0 有两个相等的实数根,则实数 a 的值为( )A 1 B1 C2 或 2 D 3 或 14不解方程,判别方程 2x23 x=3 的根的情况( )A有两个相等的实数根 B有两个不相等的实数根C有一个实数根 D无实数根5已知关于 x 的一元二次方程 kx22x+1=0 。
9、*21.2.4 一元二次方程的根与系数的关系测试时间:15 分钟一、选择题1.(2018 湖北武汉武昌月考)方程 x2-6x+10=0 的根的情况是( )A.两个实根之和为 6 B.两个实根之积为 10C.没有实数根 D.有两个相等的实数根2.已知关于 x 的一元二次方程 x2+(2m-3)x+m2=0 有两个不相等的实数根 ,且 , 满足+ =1,则 m 的值为( )11A.-3 B.1 C.-3 或 1 D.23.(2018 江苏徐州丰县月考)下列方程中 ,两根之和是正数的是( )A.3x2+x-1=0 B.x 2-x+2=0C.3x2-5x+1=0 D.2x 2-5=04.(2018 河南南阳淅川月考)已知 m,n 是方程 x2+2x-1=0 的两根,则代数式 的2+23值为( )A.9 B. C.。
10、2.3 2.3 一元二次方程根的判别式一元二次方程根的判别式 第第2 2章章 一元二次方程一元二次方程 教学目标教学目标 1.感悟一元二次方程的根的判别式的产生的过感悟一元二次方程的根的判别式的产生的过 程;程; 2.能运用根的判别式,判别方程根的情况和进能运用根的判别式,判别方程根的情况和进 行有关的推理论证;行有关的推理论证; 3.会运用根的判别式求一元二次方程中字母系会运用根的判别式求一。
11、22.2.5 一元二次方程的根与系数的关系,第22章 一元二次方程,驶向胜利的彼岸,1.一元二次方程的一般形式是什么?,3.一元二次方程的根的情况怎样确定?,2.一元二次方程的求根公式是什么?,复习导入,解下列方程,将得到的解填入下面的表格中,你发现表格中的两个解的和与积和原来的方程的系数有什么联系?,-4,0,2,2,0,1,-3,-4,2,3,5,6,探索新知,探索1一般地,对于关于x的方程x2+p x+q=0 (p、q为已知常数,p2-4q0),试用求根公式求出它的两个解x1、x2, 算一算x1+x2、x1、x2 的值,你能发现什么结论?与前面的观察的结果是否一致?,关于x的方。
12、高效提分 源于优学第05讲 一元二次方程根与系数关系温故知新用公式法解一元二次方程的一般步骤:(1)整理:把原方程整理成 ;(2)确定 a 、 b 、 c 的值,(各项系数若有分数,通常化为整数)- b b 2 - 4ac - 4ac(3)计算 的值,并判断这个值的正负:若 b2 - 4ac 0 ,则写出公式 x =, 代入 a 、 b 、 c 及 b2 - 4ac2a的值并计算;写出答案: x1 = , x2 = 若 b2 - 4ac 0 ,则方程没有实数根课堂导入对于一元二次方程方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根,当方程有两根时,我们进行研究如下:知识要点一。
13、高效提分 源于优学第05讲 一元二次方程根与系数关系温故知新用公式法解一元二次方程的一般步骤:(1)整理:把原方程整理成 ;(2)确定 a 、 b 、 c 的值,(各项系数若有分数,通常化为整数)- b b 2 - 4ac - 4ac(3)计算 的值,并判断这个值的正负:若 b2 - 4ac 0 ,则写出公式 x =, 代入 a 、 b 、 c 及 b2 - 4ac2a的值并计算;写出答案: x1 = , x2 = 若 b2 - 4ac 0 ,则方程没有实数根课堂导入对于一元二次方程方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根,当方程有两根时,我们进行研究如下:知识要点一。
14、2121. .2 2 解解一元二次方程一元二次方程 21.2 21.2 解解一元二次方程一元二次方程 21.2.4 21.2.4 一元二次方程的根与系数一元二次方程的根与系数 的的关系关系 人教版人教版 数学数学 九九年级年级 上册上册 2。
15、21.2.4 一元二次方程的 根与系数的关系,1.熟练掌握一元二次方程根与系数的关系. 2.灵活运用一元二次方程根与系数关系解决实际问题 3.提高学生综合运用基础知识分析解决较为复杂问题的能力,2 -2/3 4/3 -4/3,1/2 -4 -7/2 -2,-3/2 1/3 -7/6 -1/2,4 3/5 23/5 12/5,请同学们观察下表,请同学们猜想:对于任意的一元二次方程ax2+bx+c=0(a0)的两个实数根x1、x2,那么x1+x2, x1x2与系数a,b,c 的关系.,x1+x2= x1.x2=,如果一元二次方程ax2+bx+c=0(a0)的两个实数根是x1,x2 那么x1+x2= ,x1x2=,如果一元二次方程x2+px+q=0的两个根是x1,x2 那么。
16、2.4 2.4 一元二次方程根与系数的关系一元二次方程根与系数的关系 第第2 2章章 一元二次方程一元二次方程 教学目标教学目标 a b xx 21 a c xx 21 了解一元二次方程了解一元二次方程 的两个根分别是的两个根分别是 、 ,那么:,那么: )0(0 2 acbxax 1 x 2 x 这就是一元二次方程根与系数的关系,也叫韦达定理这就是一元二次方程根与系数。