欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2019年高考数学教师版含解析之导数的热点问题

2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.6 高考解答题热点题型高考解答题热点题型(三三)利用导数探究函数的零点问题利用导数探究函数的零点问题 目录 一、题型全归纳一、题型全归纳 题型一题型一 判断、证明或讨论函数零点的

2019年高考数学教师版含解析之导数的热点问题Tag内容描述:

1、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 3.6 高考解答题热点题型高考解答题热点题型(三三)利用导数探究函数的零点问题利用导数探究函数的零点问题 目录 一、题型全归纳一、题型全归纳 题型一题型一 判断、证明或讨论函数零点的个数判断、证明或讨论函数零点的个数 【题型要点】【题型要点】判断函数零点个数的 3 种方法。

2、选择题、填空题的解法【2019 年高考考纲解读】高考选择题、填空题绝大部分属于低中档题目,一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力. (1)解题策略:选择题、填空题是属于“ 小灵通”题,其解题过程“不讲道理”,所以解题的基本策略是充分利用题干所提供的信息作出判断,先定性后定量,先特殊后一般,先间接后直接,另外对选择题可以先排除后求解. (2)解决方法:选择题、填空题属“ 小”题,解题的原则是“小”题巧解, “小”题不能大做.主要分直接法。

3、空间中的平行与垂直【2019 年高考考纲解读】1.以选择题、填空题的形 式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考 查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中档【重点、难点剖析】1直线、平面平行的判定及其性质(1)线面平行的判定定理: a , b , a ba .(2)线面平行的性质定理: a , a , ba b.(3)面面平行的判定定理: a , b , a b P, a , b .(4)面面平行。

4、函数的应用1如图是函数 f(x)x 2ax b 的部分图象,则函数 g(x)ln xf(x)的零点所在的区间是( )A. B.(14, 12) (12, 1)C (1,2) D(2,3)2某企业为节能减排,用 9 万元购进一台新设备用于生产,第一年需运营费用 2 万元,从第二年 起,每年运营费用均比上一年增加 3 万元,该设备每年生产的收入均为 21 万元,设该设备使用了 n(nN *)年后,盈利总额达到最 大值( 盈利额等于收入减去成本),则 n 等于( )A6 B7 C8 D7 或 83已知定义在 R 上的奇函数 f(x) 满足当 x0 时,f (x)2 x2x4,则 f(x)的零点个数是( )来源:Zxxk.ComA2 B3 C4 D54已知函数 f(x。

5、圆锥曲线的综合问题【2019 年高考考纲解读】1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大【重点、难点剖析】一、 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解二、定点、定值问题1由直线方程确定定点,若得到了直线方程的点斜式: y y0 k(x x0),则直线必过。

6、数列的求和问题【2019 年高考考纲解读】高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现了转化与化归的思想【重点、难点剖析】一、分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并二、错位相减法求和错位相减法是在推导等比数列的前 n 项和公式时所用 的方法,这种方法主要用于求数列a nbn的前 n 项和,其中a n,b n分别是等差数列和等比数列三、裂项相消法求和裂项相消。

7、数列的综合问题【2019 年高考考纲解读】1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应 用问题相结合,考查数学建模和数学应用能力【重点、难点剖析】来源:一、利用 Sn,a n 的关系式求 an1数列a n中, an 与 Sn 的关系an Error!2求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式(2)在已知数列 an中,满足 an1 a nf(n ),且 f(1)f(2) f (n)可求,则可用累加法求数列的通项 an.(3)在已知数列 an中,满足 f(n) 。

8、导数及其运用1设函数 y xsin xcos x 的图象在点 处切线的斜率为 g(t),则函数 yg(t) 的图象(t, ft)一部分可以是( )2已知函数 f(x) k ,若 x1 是函数 f(x)的唯一极值点, 则实数 k 的取值范围exx(ln x x)是( )A. B.( , e ( , e)C. D.( e, ) e, )3已知定义在 R 上的可导函数 f(x)的导函 数为 f(x),满足 f(x) b Bab0 时,xf( x)0 成立的 x 的取值范围是( )A(,1)(0,1)B(,1)(1,)C (1, 0)(1,)D(1,0)(0,1)22若函数 f(x) x3 x22bx 在区间3,1上不是单调函数,则函数 f(x)在 R 上的极13 (1 b2)小值为( )A2 b B b43 32 23C 0 Db 2 b31623函。

9、导数的热点问题1在某次水下科研考察活动中 ,需要潜水员潜入水深为 60 米的水底进行作业,根据以往经验,潜水员下潜的平均速度为 v(米/单位时间),每单位时间的用氧量为 31( 升) ,(v10)在水底作业 10 个单位时间,每单位时间用氧量为 0.9( 升 ),返回水面的平均速度为 (米/ 单v2位时间) ,每单位时间用氧量为 1.5(升) ,记该潜水员在此次考察活动中的总用氧 量为 y(升)(1)求 y 关于 v 的函数关系式;(2)若 cv15(c0),求当下潜速度 v 取什么值时,总用氧量最 少来源:Z*xx*k.Com2已知函数 f(x)x .ax(1)判断函数 f(x)的单调性;学 0 科来源:。

10、导数的热点问题1在某次水下科研考察活动中 ,需要潜水员潜入水深为 60 米的水底进行作业,根据以往经验,潜水员下潜的平均速度为 v(米/单位时间),每单位时间的用氧量为 31( 升),(v10)在水底作业 10 个单位时间,每单位时间用氧量为 0.9( 升),返回水面的平均速度为 (米/单v2位时间) ,每单位时间用氧量为 1.5(升) ,记该潜水员在此次考察活动中的总用氧 量为 y(升)(1)求 y 关于 v 的函数关系式;(2)若 cv15(c0),求当下潜速度 v 取什么值时,总用氧量最 少来源:Z*xx*k.Com2已知函数 f(x)x .ax(1)判断函数 f(x)的单调性; Z*X*X*K(2)设函。

【2019年高考数学教师版含解析之导数的热点问题】相关DOC文档
2019年高考数学教师版(含解析)之选择题、填空题的解法
2019年高考数学教师版(含解析)之空间中的平行与垂直
2019年高考数学教师版(含解析)之函数的应用
2019年高考数学教师版(含解析)之圆锥曲线的综合问题
2019年高考数学教师版(含解析)之数列的求和问题
2019年高考数学教师版(含解析)之数列的综合问题
2019年高考数学教师版(含解析)之导数及其运用
2019年高考数学(含解析)之导数的热点问题
2019年高考数学教师版(含解析)之导数的热点问题
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开