欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2019苏教版高中数学必修二第3课时

1.2.3直线与平面的位置关系 第1课时直线与平面平行的判定 一、选择题 1.下列条件中能得出直线m与平面平行的是() A.直线m与平面内所有直线平行 B.直线m与平面内无数条直线平行 C.直线m与平面没有公共点 D.直线m与平面内的一条直线平行 答案C 解析A,本身说法错误;B,当直线m在平面内时

2019苏教版高中数学必修二第3课时Tag内容描述:

1、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定一、选择题1.下列条件中能得出直线m与平面平行的是()A.直线m与平面内所有直线平行B.直线m与平面内无数条直线平行C.直线m与平面没有公共点D.直线m与平面内的一条直线平行答案C解析A,本身说法错误;B,当直线m在平面内时,m与不平行;C,能推出m与平行;D,当直线m在平面内时,m与不平行.故选C.2.如果平面外有两点A,B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是()A.平行 B.相交C.平行或相交 D.AB答案C解析结合图形可知选项C正确.3.若直线a平面,直线b平面,则a与b的位。

2、第2课时直线与平面平行的性质一、选择题1.若直线l平面,则过l作一组平面与相交,记所得的交线分别为a,b,c,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案A解析因为直线l平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.2.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EHFG,则EH与BD的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A3.如图,在三棱柱ABCA1B1C1中,AM2MA1,BN2NB1,过MN作一平面交底面三角形ABC的边BC,A。

3、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系一、选择题1.对任意的实数k,直线ykx1与圆x2y22的位置关系一定是()A.相离 B.相切C.相交但直线不过圆心 D.相交且直线过圆心答案C解析易知直线过定点(0,1),且点(0,1)在圆内,所以直线与圆相交但是直线不过圆心(0,0).2.若直线xy10与圆(xa)2y22有公共点,则实数a的取值范围是()A.3,1 B.1,3C.3,1 D.(,31,)答案C解析圆(xa)2y22的圆心C(a,0)到直线xy10的距离为d,则dr|a1|23a1.3.如果圆x2y2DxEyF0与x轴相切于原点,则()A.E0,DF0 B.D0,E0,F0C.D0,EF0 D.F0,DE0答案A解析由题意得,圆心坐。

4、第5课时 线面垂直的综合应用,第1章 1.2.3 直线与平面的位置关系,学习目标 1.理解斜线在平面内的射影及与平面所成角的概念,会求简单的线面角. 2.理解点到平面的距离的概念,会求简单的点面距离. 3.线面平行与垂直的有关定理的综合运用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与平面所成的角,思考 直线与平面所成的角是如何定义的?取值范围是什么?,答案 平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面所成的角. 规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线与平面平。

5、第2课时 两平面垂直的判定,第1章 1.2.4 平面与平面的位置关系,学习目标 1.了解二面角及其平面角的概念,能确定二面角的平面角. 2.初步掌握面面垂直的定义及两个平面垂直的判定定理.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二面角,思考1 观察教室内门与墙面,当门绕着门轴旋转时,门所在的平面与墙面所形成的角的大小和形状.数学上,用哪个概念来描述门所在的平面与墙面所在的平面所形成的角?,答案 二面角.,思考2 平时,我们常说“把门开大一点”,在这里指的是哪个角大一点?,答案 二面角的平面角.,梳理 (1)二面角的概。

6、11 集合的含义及其表示第 1 课时 集合的含义学习目标 1.通过实例理解集合的有关概念(难点);2.初步理解集合中元素的三个特性(重点);3.体会元素与集合的属于关系(重点);4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象(重点)预习教材 P5 6,完成下面问题:知识点一 集合的概念(1)定义:一定范围内某些确定的、不同的对象的全体构成一个集合(2)记法:通常用大写拉丁字母表示(3)常用数集及表示符号定义 自然数集 正整数集 整数集 有理数集 实数集记法 N N*或 N Z Q R【预习评价】下列给出的对象中,能构成集合的是_比 2 大的。

7、第 2 课时 集合的表示学习目标 1.掌握用列举法表示有限集(重点);2.理解描述法格式及其适用情形(难点、重点);3.学会在集合不同的表示法中作出选择和转换(难点);4.理解集合相等、有限集、无限集、空集等概念(重点)预习教材 P6 7,完成下面问题:知识点一 集合的表示方法表示方法 定义 一般形式列举法将集合的元素一一列举出来,并置于花括号“_”内a1,a 2,a n,描述法将集合的所有 元素都具有的 性质(满足的条件)表示出来x|p(x)Venn图法用一个封闭曲线围成的平面区域的内部表示一个集合【预习评价】(1)方程(x1)(x2) 0 的实数根组成的集。

8、32 对数函数32.1 对数的概念第 1 课时 对数的概念学习目标 1.理解对数的概念,掌握对数的基本性质(重、难点);2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重、难点)预习教材 P7274,完成下面问题:知识点一 对数的概念一般地,如果 a(a0,a1) 的 b 次幂等于 N,即 abN,那么就称 b 是以 a 为底 N 的对数,记作 logaNb,其中,a 叫做对数的 底数,N 叫做真数【预习评价】思考 解指数方程 3x 时,可化为 3x ,所以 x .请思考怎样解 3x2?312提示 因为 2 难以化为以 3 为底的指数式,因而需要引入对数概念知识点二 对数的基本。

9、第2课时两平面垂直的判定一、选择题1.下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面内的直线a垂直于平面内的直线b答案D解析如图所示,在正方体ABCDA1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.2.如图所示,在三棱锥DABC中,若ABCB,ADCD,E是AC的中点,则下列结论中正确的是()A.平面ABC平面ABDB.平面ABD平面BDCC.平面ABC平面BDE,且平面ADC平面BDED.平面ABC平面ADC,且平。

10、2.2圆与方程2.2.1圆的方程第1课时圆的标准方程一、选择题1.圆(x1)2(y2)24的圆心与半径分别为()A.(1,2),2 B.(1,2),2C.(1,2),4 D.(1,2),4答案A2.以下各点在圆(x4)2y24内的是()A.(0,2) B.(2,0) C.(3,1) D.(1,3)答案C解析根据题意,依次分析选项:对于(0,2),有(04)222204,点在圆外,不符合题意;对于(2,0),有(24)2024,点在圆上,不符合题意;对于(3,1),有(34)21224,点在圆外,不符合题意.3.方程(x1)0所表示的曲线是()A.一个圆 B.两个点C.一个点和一个圆 D.一条直线和一个圆答案D解析(x1)0可化为x10或x2y23,方程(x1)0表示一条直线。

11、第2课时两点式一、选择题1.一条直线不与坐标轴平行或重合,则它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式答案B解析由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式.由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式.故选B.2.直线1在y轴上的截距是()A.|b| B.b2 C.b2 D.b答案B解析令x0,得yb2.3.两条直线l1:1和l2:1在同一直角坐标系中的。

12、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。

13、第1课时 两平面平行,第1章 1.2.4 平面与平面的位置关系,学习目标 1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理. 2.会利用“线线平行”、“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”、“线面平行”及“面面平行”等问题. 3.了解两个平面间的距离的概念.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 两个平面的位置关系,l,知识点二 平面与平面平行的判定定理,思考1 三角板的一条边所在的直线与平面平行,这个三角板所在的平面与平面平行吗?,答案 不一定.,思考2 三角板的两条边所在的直线。

14、1.2点、线、面之间的位置关系1.2.1平面的基本性质第1课时 平面的概念一、选择题1.下列四个选项中的图形表示两个相交平面,其中画法正确的是()答案D解析画两个相交平面时,被遮住的部分用虚线表示.2.空间不共线的四点可以确定平面的个数为()A.1B.4C.5D.1或4答案D解析若四点共面,则可确定1个平面;若四点不共面,则可确定4个平面.3.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面答案D解析如果两个平面重合,则排除A,B;两个平面相交。

15、2.1.2直线的方程第1课时点斜式一、选择题1.过点(4,2),倾斜角为150的直线的点斜式方程为()A.y2(x4)B.y(2)(x4)C.y(2)(x4)D.y2(x4)答案B解析由题意知ktan 150,所以直线的点斜式方程为y(2)(x4).2.已知直线的倾斜角为60,在y轴上的截距为2,则此直线的方程为()A.yx2 B.yx2C.yx2 D.yx2答案D解析60,ktan 60,直线l的方程为yx2.3.直线yb2(xa)在y轴上的截距为()A.ab B.2abC.b2a D.|2ab|答案C解析由yb2(xa),得y2x2ab,故在y轴上的截距为b2a.4.将直线yx绕原点逆时针旋转90,再向右平移1个单位长度,所得到的直线方程为()A.y。

16、第2课时 异面直线一、选择题1.长方体的一条体对角线与长方体的棱所组成的异面直线有()A.2对 B.3对 C.6对 D.12对答案C解析如图所示,在长方体中没有与体对角线平行的棱,要求与长方体体对角线AC1异面的棱所在的直线,只要去掉与AC1相交的六条棱,其余的都与体对角线异面,与AC1异面的棱有BB1,A1D1,A1B1,BC,CD,DD1,长方体的一条体对角线与长方体的棱所组成的异面直线有6对,故选C.2.设P是直线l外一定点,过点P且与l成30角的异面直线()A.有无数条 B.有两条C.至多有两条 D.有一条答案A解析如图所示,过点P作直线ll,以l为轴,与l成30角。

17、第3课时 两平面垂直的性质,第1章 1.2.4 平面与平面的位置关系,学习目标 1.掌握平面与平面垂直的性质定理. 2.能运用性质定理解决一些简单的问题. 3.了解平面与平面垂直的判定定理和性质定理间的相互联系.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 平面与平面垂直的性质定理,思考 黑板所在的平面与地面所在的平面垂直,你能否在黑板上画一条直线与地面垂直?,答案 容易发现墙壁与墙壁所在平面的交线与地面垂直,因此只要在黑板上画出一条与这条交线平行的直线,则所画的直线必与地面垂直.,梳理,一个平面内,交线,垂直,a,al,思考。

18、第2课时两条直线的垂直一、选择题1.已知平面内有A(5,1),B(1,1),C(2,3)三点,则下列说法正确的是()A.ABC是直角三角形,且BAC90;B.ABC是直角三角形,且ABC90;C.ABC是直角三角形,且ACB90;D.ABC不是直角三角形.答案B解析kAB,kBC2,kABkBC1,ABBC,ABC90.只有B正确.2.已知直线l1:yx,若直线l2l1,则直线l2的倾斜角为()A.135 B.45 C.60 D.90答案A解析因为直线yx的斜率k11,所以若直线l2l1,则直线l2的斜率k1.所以直线l2的倾斜角为135.3.已知点A(0,1),B(a,0),C(3,2),直线l经过B,C两点,且l垂直于AB,则a的值为()A.1 B.2 C.1或2 D.0。

19、第3课时两平面垂直的性质一、选择题1.下列命题中错误的个数为()如果平面平面,那么平面内一定存在直线平行于平面;如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面;如果平面平面,平面平面,l,那么l平面;如果平面平面,那么平面内所有直线都垂直于平面.A.4 B.3 C.2 D.1答案D解析如果平面平面,平面内的直线与平面平行,相交或在平面内,故错误.2.平面平面,l,n,nl,直线m,则直线m与n的位置关系为()A.平行 B.垂直C.相交 D.相交或平行答案A解析,l,n,nl,n.又m,mn.3.已知ABC是等腰直角三角形,BAC90,ADBC,D为垂足,以。

20、第3课时一般式一、选择题1.直线(m25m6)x(m29)y20的斜率为2,则m的值为()A.8 B.8 C.3 D.3答案A解析由已知得m290,且2,解得m8或m3(舍去).2.若点A(ab,ab)在第一象限内,则直线bxayab0不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C解析点A在第一象限,所以ab0且ab0,即a0,b0,由bxayab0可得yxb,所以0,直线yxa与y轴的交点在y轴正半轴上,直线xya0过第一、二、三象限,而直线axy0过定点(0,0),倾斜角为锐角,此时各选项都不正确;若a0,则直线yxa与y轴的交点在y轴负半轴上,直线过第一、三、四象限。

【2019苏教版高中数学必修二第3课时】相关PPT文档
苏教版高中数学必修二课件:1.2.3 第5课时 线面垂直的综合应用
苏教版高中数学必修二课件:1.2.4 第2课时 两平面垂直的判定
苏教版高中数学必修二课件:1.2.4 第1课时 两平面平行
苏教版高中数学必修二课件:1.2.4 第3课时 两平面垂直的性质
【2019苏教版高中数学必修二第3课时】相关DOC文档
苏教版高中数学必修1学案:1.1(第1课时)集合的含义
苏教版高中数学必修1学案:1.1(第2课时)集合的表示
苏教版高中数学必修1学案:3.2.1(第1课时)对数的概念
2019苏教版高中数学必修二《第1课时 圆的标准方程》课时对点练(含答案)
2019苏教版高中数学必修二《第2课时 两点式》课时对点练(含答案)
2019苏教版高中数学必修二《第1课时 平面的概念》课时对点练(含答案)
2019苏教版高中数学必修二《第1课时 点斜式》课时对点练(含答案)
2019苏教版高中数学必修二《第2课时 异面直线》课时对点练(含答案)
2019苏教版高中数学必修二《第2课时 两条直线的垂直
2019苏教版高中数学必修二《第3课时 一般式》课时对点练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开