阶段提能训练二函数的概念 一、选择题 1已知集合A1,2,3,k,B4,7,a4,a23a,且aN*,xA,yB,要使B中元素y3x1和A中的元素x对应,则a,k的值分别为() A2,3 B3,4 C3,5 D2,5 答案D 解析按照对应法则y3x1, 则B4,7,10,3k14,7,a4,a23a
2019苏教版高中数学选修1-1滚动训练二含答案Tag内容描述:
1、阶段提能训练二函数的概念一、选择题1已知集合A1,2,3,k,B4,7,a4,a23a,且aN*,xA,yB,要使B中元素y3x1和A中的元素x对应,则a,k的值分别为()A2,3 B3,4 C3,5 D2,5答案D解析按照对应法则y3x1,则B4,7,10,3k14,7,a4,a23a,而aN*,a410,故a23a10,解得a2(舍负),则3k1a416,解得k5.2下列各组表示同一函数的是()Ay与y()2Bf(x)x0,g(x)1Cyx1(xR)与yx1(xN)Dy1与y1答案D解析A,B,C选项中的两个函数的定义域不同;D中函数定义域相同,对应法则相同,所以是同一函数3函数y的定义域是M,值域是N,则()AMxR|x0,NyR|y0BMxR|x1,NyR|y1CMxR|x0。
2、训练1空间几何体1有两个面平行的多面体不可能是()A棱柱 B棱锥C棱台 D以上都错答案B解析由棱锥的结构特征可得2下列命题中,错误的是()A圆柱的轴截面是过母线的截面中面积最大的一个B用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C圆台的所有平行于底面的截面都是圆D圆锥所有的轴截面都是全等的等腰三角形答案B解析用一个平行于底面的平面截棱锥,底面与截面之间的部分组成的几何体叫棱台,B错误3将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体由()A一个圆台、两个圆锥构成B两个圆台、一个圆锥构成C两个。
3、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1过点A(3,2)且与椭圆1有相同焦点的椭圆的方程为()A.1 B.1C.1 D.1答案A解析由题意知c25,可设椭圆方程为1(0),则1,解得10或2(舍去),所求椭圆的方程为1.2双曲线y21的焦点坐标是()A(,0),(,0) B(2,0),(2,0)C(0,),(0,) D(0,2),(0,2)答案B解析双曲线方程为y21,a23,b21,且双曲线的焦点在x轴上,c2,即该双曲线的焦点坐标为(2,0),(2,0)故选B.3抛物线yx2的焦点坐标为()A(2,0) B(0,2)C. D.答案B解析抛物线的标准方程为x28y,则其焦点坐标。
4、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.曲线ysin x在点P处的切线斜率是_.考点导数的几何意义题点求某点处切线斜率答案解析由ysin x,得ycos x,所以在点P处的切线斜率是kcos .2.函数f(x)ln xx的单调递增区间为_.考点导数的运用题点求函数单调区间答案(0,1)解析令f(x)10,解不等式即可解得x1,注意定义域为(0,).所以0x1.3.设f(x)xln x,若f(x0)2,则x0_.考点导数的运用题点求函数导数答案e解析f(x)xln x,f(x)ln xxln x1,由f(x0)2,得ln x012,x0e.4.函数f(x)(x1)2(x2)2的极大值是_。
5、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件答案A解析当a3时,A1,3,AB;当AB时,a2或3.所以“a3”是“AB”的充分不必要条件2命题“nN*,f(n)n”的否定是()AnN*,f(n)nBnN*,f(n)nCnN*,f(n)nDnN*,f(n)n答案A3下列命题中,不是全称命题的是()A任何一个实数乘以0都等于0B自然数都是正整数C所有的素数都是奇数D一定存在没有最大值的二次函数答案D解析D选项是存在性命题4设xR,则。
6、滚动训练二(14)一、选择题1下面几种推理是合情推理的是()由正三角形的性质类比出正三棱锥的有关性质;由正方形、矩形的内角和为360,归纳出所有四边形的内角和都是360;三角形内角和是180,四边形内角和是360,五边形内角和是540,由此得出凸n边形内角和是(n2)180;小李某次数学模块考试成绩是90分,由此推出小李的全班同学这次数学模块考试的成绩都是90分A BC D考点合情推理的综合应用题点合情推理的判别答案B2用反证法证明:若整系数一元二次方程ax2bxc0(a0)有有理数根,那么a,b,c中至少有一个是偶数用反证法证明时,下列假设正确的是。
7、滚动训练滚动训练(二二) 一、选择题 1下列说法正确的是( ) A命题“直角相等”的条件和结论分别是“直角”和“相等” B语句“最高气温 30 时我就开空调”是命题 C命题“对角线互相垂直的四边形是菱形”是真命题 D语句“当 a4 时,方程 x24xa0 有实根”是假命题 考点 命题的定义及分类 题点 命题的定义 答案 D 解析 对于 A,改写成“若 p,则 q”的形式应为“若有两个角是直角,则这两个角相等”; B 项所给语句不是命题;C 项的反例可以是“用边长为 3 的等边三角形与底边为 3,腰为 2 的等腰三角形拼成的四边形不是菱形”来说明,故选 D. 。
8、模块综合试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知命题p:x9,log3x2,则下列关于命题綈p的说法中,正确的是()A綈p:x9,log3x2为假命题B綈p:xln b”是“aln bab0,ab,ab0是ab的充分不必要条件,“ln aln b”是“ab”的充分不必要条件。
9、滚动训练(一)一、填空题1已知Ax|x10,B2,1,0,1,则(RA)B_.答案2,1解析因为集合Ax|x1,所以RAx|x1,则(RA)Bx|x12,1,0,12,12设全集UR,集合Ax|x0,By|y1,则UA与UB的包含关系是_答案UAUB解析先求出UAx|x0,UBy|y1UAUB.3已知全集UR,A1,2,3,4,5,BxR|x3,则集合A(UB)_.答案1,2解析UBxR|x0,则下列说法正确的是_AB;AB;AB;ABR.答案解析因为Bx|32x0,Ax|。
10、滚动训练(三)一、填空题1已知集合A,B均为全集U1,2,3,4的子集,且U(AB)4,B1,2,则A(UB)_.答案3解析U1,2,3,4,U(AB)4,AB1,2,3又B1,2,3A1,2,3又UB3,4,A(UB)32已知幂函数f(x)x(是常数)的图象过点,则函数f(x)的值域为_答案(,0)(0,)解析f(x)x(是常数)的图象过点,2,则1,故f(x)x1,易知值域为(,0)(0,)3函数f(x)x1的定义域是_,值域是_答案R(1,)解析显然函数f(x)的定义域为R,因为x0,故x11,即f(x)1.4若a,则化简的结果是_答案解析a,2a10,于是,原式.5_。
11、滚动训练一(2.12.2)一、填空题1观察下列等式:132332,13233362,13233343102,.根据上述规律,第五个等式为_考点归纳推理的应用题点归纳推理在数对(组)中的应用答案132333435363212解析由所给等式可得,等式两边的幂式指数规律明显,底数关系如下,123,1236,123410,即左边底数的和等于右边的底数,故第五个等式为132333435363(123456)2212.2三段论“所有的无理数都不能表示成分数形式,故不能表示成分数形式”中,小前提是_答案是无理数解析此三段论中,第一句是大前提,第二句是结论,又根据三段论的格式知,小前提是“是无理数”3古埃及。
12、滚动训练二(3.13.3)一、填空题1欧拉公式eixcos xisin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数对应的点在复平面中位于第_象限考点复数的几何意义题点复数与点的对应关系答案二解析e2icos 2isin 2,由于0,点(cos 2,sin 2)在第二象限2已知1i(i为虚数单位),则复数z_.考点复数四则运算的综合应用题点复数的混合运算答案1i解析因为1i,所以z1i.3设复数z,则z_.考点复数四。
13、滚动训练(五)一、填空题1.函数f(x)exx的单调递增区间是_.考点导数在函数中的运用题点求函数单调区间答案(0,)解析f(x)exx,f(x)ex1,由f(x)0,得ex10,即x0.2.函数f(x)x23x4在0,2上的最小值是_.考点导数在函数中的运用题点求函数最小值答案解析f(x)x22x3,令f(x)0,x0,2,得x1.比较f(0)4,f(1),f(2),可知最小值为.3.椭圆C的中心在原点,焦点在x轴上,若椭圆C的离心率等于,且它的一个顶点恰好是抛物线x28y的焦点,则椭圆C的标准方程为_.考点椭圆的几何性质题点求椭圆的方程答案1解析设,12,2,a4.1.4.已知双曲线1(b0)的左、右焦点分别。
14、滚动训练(一)一、选择题1王昌龄的从军行中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的()A充分条件 B必要条件C充要条件 D既不充分又不必要条件答案B解析“攻破楼兰”是“返回家乡”的必要条件故选B.2“”是“sin ”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件答案D解析易知“”不一定得到“sin ”,比如,但sin 0;反之亦然,如sin1,但.所以“”是“sin ”的既不充分又不必要条件,故选D.3“1m2”是“方程1表示的曲线是焦点在y轴上的椭圆”的()A充分不必要条件 B必。
15、滚动训练(四)一、选择题1不等式x(x2)0成立的一个必要不充分条件是()Ax(0,2) Bx(0,1)Cx1,) Dx(1,3)答案C解析由x(x2)0,得0x2,因为(0,2)1,),所以“x1,)”是“不等式x(x2)0成立”的一个必要不充分条件2已知f(x)x2,则曲线yf(x)过点P(1,0)的切线方程是()Ay0 B4xy40Cy0或4xy40 D4xy40答案C解析设切点坐标为(x0,x),f(x)2x,切线方程为y02x0(x1),x2x0(x01),解得x00或x02,所求切线方程为y0或y4(x1),即y0或4xy40.3已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60,则双曲线C的离心率为()A. B. C. D.答案B解析。
16、滚动训练(五)一、填空题1函数f(x)exx的单调递增区间是()A(0,) B(1,)C0,) D1,)答案A解析f(x)exx,f(x)ex1,由f(x)0,得ex10,即x0.2函数f(x)x23x4在0,2上的最小值是()A B C2 D3答案B解析f(x)x22x3,令f(x)0,x0,2,得x1.比较f(0)4,f(1),f(2),可知最小值为.3椭圆C的中心在原点,焦点在x轴上,若椭圆C的离心率等于,且它的一个顶点恰好是抛物线x28y的焦点,则椭圆C的标准方程为()A.1 B.1C.1 D.1答案A解析设,12,2,a4.1.4已知双曲线1(b0)的左、右焦点分别为F1,F2,其一条渐近线方程为yx,点P(,y0)在该双曲线上,则·。
17、滚动训练(二)一、选择题1双曲线25x29y2225的实轴长、虚轴长、离心率分别是()A10,6, B6,10,C10,6, D6,10,答案B解析双曲线25x29y2225即为1,可得a3,b5,c,则实轴长为2a6,虚轴长为2b10,离心率e.2若aR,则“|a2|1”是“a0”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件答案B解析记不等式|a2|1的解集为A,则Aa|a1或a3,记Ba|a0,则BA,即“a0”能推出“|a2|1”,反之不能,所以“|a2|1”是“a0”的必要不充分条件故选B.3椭圆1与1(0k9)的关系为()A有相等的长、短轴长 B有相等的焦距C有相同的焦点 D有相同的顶点答。