,第3课时 一元二次方程,考点突破,3,中考特训,4,广东中考,5,课前小测,D,C,1若一元二次方程x22xm0有两个不相同的实数根,则实数m的取值范围是( ) Am1 Bm1 Cm1 Dm1 2某中学组织初三学生篮球比赛,以班为单位, 每两班之间都比赛一场,计划安排15场比赛,则 共有多少个班级
2020广西中考数学一轮复习课件第10讲 一元二次方程Tag内容描述:
1、,第3课时 一元二次方程,考点突破,3,中考特训,4,广东中考,5,课前小测,D,C,1若一元二次方程x22xm0有两个不相同的实数根,则实数m的取值范围是( ) Am1 Bm1 Cm1 Dm1 2某中学组织初三学生篮球比赛,以班为单位, 每两班之间都比赛一场,计划安排15场比赛,则 共有多少个班级参赛?( ) A4 B5 C6 D7,课前小测,D,课前小测,4(2019舟山) 在x2_40的 括号中添加一个关于x的一次项,使方程有 两个相等的实数根 5(2019盐城) 设x1、x2是方程x23x 20的两个根,则x1x2x1x2_,4x,1,知识精点,知识点一:一元二次方程及其的解法,2解法: (1)直接开平方法:形如x。
2、第6讲 一元二次方程及其应用,考法1,考法2,考法3,考法4,考法5,一元二次方程的有关概念 一元二次方程的概念必须满足三个条件:是整式方程;只含有一个未知数;未知数的最高次数是2. 例1下列方程一定是一元二次方程的是( ) A.3x2+4- =0 B.5x2-6y-3=0 C.ax2-x+2=0 D.3x2-2x-1=0 答案:D 方法点拨解决此类问题的关键是牢记并理解一元二次方程的定义,特别是二次项系数应为非零数,即a0这一隐含条件.,考法1,考法2,考法3,考法4,考法5,一元二次方程的解法 一元二次方程的基本解法有四种:(1)直接开方法;(2)因式分解法;(3)配方法;(4)公式法.在解一元二次方。
3、首 页 末 页 第一部分第一部分 数与代数数与代数 第三章第三章 方程与方程组方程与方程组 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第9 9课时课时 一元二次方程一元二次方程 首 页。
4、第7课时 一元二次方程及其应用 课标要求 1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效 模型,经历估计方程解的过程. 2.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程. 3.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等. 4.(选学)了解一元二次方程的根不系数的关系. 5.能根据具体问题的实际意义,检验方程的解是否合理. 。
5、 1 考点 05 一元二次方程 一一、一元二次方程的概念一元二次方程的概念 1一元二次方程一元二次方程 只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程 2一般形式一般形式 2 0axbxc(其中 , ,a b c为常数, 0a),其中 2, ,ax bx c分别叫做二次项、一次项和常数 项,, a b分别称为二次项系数和一次项系数 注意:(1)在一元二次方程的一般形式。
6、第二单元第二单元 方程方程 组组 与不等式与不等式 组组 第第 6 课时课时 一元二次方程一元二次方程 点对点课时内考点巩固20 分钟 1. 2019 怀化一元二次方程 x22x10 的解是 A. x11,x21 B. x1x21 C. x。
7、第7讲 一元一次方程,一、方程的有关概念 1. 含有_的等式叫做方程 2. 方程的解:使方程等号左右两边_的未知数的值,叫做方程的解(或方程的根) 3. 解方程:求得_的过程,叫做解方程,未知数,相等,方程的解,二、等式的性质 1. 等式的性质1:等式两边同时加(或减)_, _结果仍相等即,如果ab,那么ac_. 2. 等式的性质2:等式两边同时乘以_,或同时除以一个_,结果仍相等 即,如果ab,那么ac_; 如果ab且c0,那么 _. 注意:等式的性质是方程变形、化简的依据与法则,同一个数(或,bc,一个数,不为0的数,bc,式子),三、一元一次方程 1. 概念:只含有_。
8、课题15 二次函数与一元二次方程的关系,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 二次函数与一元二次方程的关系 当二次函数y=ax2+bx+c(a0)的值等于0时,得到一元二次方程ax2+bx+c=0(a 0),与其对应的自变量的值即为方程的实数根;反之,亦然.由此得到二次函 数y=ax2+bx+c的图象与x轴的交点个数、一元二次方程ax2+bx+c=0的实数根 的个数之间的关系,如下表所示:,基础知识梳理,温馨提示 b2-4ac的符号、抛物线与x轴的位置关系、一元二次方程的实 数根的个数,分别从“数”与“形”的角度描述了二次函数与一元二次方程 之间的关。
9、过关练测9一元二次方程及其应用(时间:30分钟)基础过关题号123456答案1.已知m是方程x22x10的一个根,则代数式2m24m2019的值为( )A2022 B2021 C2020 D20192关于x的方程x2mx10有两个不相等的实数根,则m的值可以是( )A0 B1 C2 D33关于x的一元二次方程x2(a22a)xa10的两个实数根互为相反数,则a的值为( )A2 B0 C1 D2或04若,是一元二次方程3x22x90的两根,则的值是( )A. B C D.5方程(m2)x2x0有两个实数根,则m的取值范围( )Am Bm且m2Cm3 Dm3且m26定义新运算:对于任意实数a,b,都有aba23ab,如3532335,若x1。
10、课题8 一元二次方程及其应用,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 一元二次方程的相关概念及解法 形如 ax2+bx+c=0 (其中a、b、c为常数,a0)的方程为一元二次方程,满 足三个条件:(1)等号两边都是 整式 ;(2)只含有 一个 未知数;(3)未 知数的最高次数是 2 .,基础知识梳理,1.关于x的一元二次方程ax2+bx+c=0(a0)的根的判别式为b2-4ac,通常把它记 作,即=b2-4ac. (1)b2-4ac0方程有 两个不相等 的实数根. (2)b2-4ac=0方程有 两个相等 的实数根. (3)b2-4ac0方程 没有 实数根.,考点二 一元二次方程的解法,2.一元二次方程的解。
11、2022年中考数学一轮复习 08 一元二次方程 考点考点 课标要求课标要求 考查角度考查角度 1 一元二次一元二次方程的方程的 解法解法 了解一元二次方程的概念,理了解一元二次方程的概念,理解配方法,会用因式分解法解配方法,会用因式分解法公。
12、第 6 讲 一元二次方程A 组 基础题组一、选择题1.用配方法解一元二次方程 x2-6x-10=0 时,下列变形正确的是( )A.(x+3)2=1 B.(x-3)2=1C.(x+3)2=19 D.(x-3)2=192.如果 x2-x-1=(x+1)0,那么 x 的值为( )A.2 或-1 B.0 或 1 C.2 D.-13.一元二次方程 x2-4x=12 的根是( )A.x1=2,x2=-6 B.x1=-2,x2=6C.x1=-2,x2=-6 D.x1=2,x2=64.已知关于 x 的一元二次方程 x2+2x-(m-2)=0 有实数根,则 m 的取值范围是( )A.m1 B.m1C.m-1 且 m0二、解答题3.(2017 黄冈)已知关于 x 的一元二次方程 x2+(2x+1)x+k2=0 有两个不相等的实数根.(1)求 k 的取值范围;(2)设方程的两。
13、第6讲一元二次方程(参考用时:45分钟)A层(基础)1.一元二次方程2x2-5x-2=0的根的情况是(B)(A)有两个相等的实数根(B)有两个不相等的实数根(C)只有一个实数根(D)没有实数根解析:a=2,b=-5,c=-2,=b2-4ac=(-5)2-42(-2)=25+16=410,一元二次方程2x2-5x-2=0有两个不相等的实数根.故选B.2.(2019兰州)x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b等于(A)(A)-2 (B)-3 (C)-1 (D)-6解析:把x=1代入方程x2+ax+2b=0得1+a+2b=0,a+2b=-1,2a+4b=2(a+2b)=2(-1)=-2.故选A.3.(2019安阳一模)已知关于x的一元二次方程x2-x-a+34=0有两个不相等的实数根,则满足条件。
14、第一部分第二章第3讲1(2017广东)如果x2是方程x23xk0的一个根,则常数k的值为(B)A1B2C1D22(2018铜仁)关于x的一元二次方程x24x30的解为(C)Ax11,x23Bx11,x23Cx11,x23Dx11,x233(2019金华)用配方法解方程x26x80时,配方结果正确的是(A)A(x3)217B(x3)214C(x6)244D(x3)214(2018广东)关于x的一元二次方程x23xm0有两个不相等的实数根,则实数m的取值范围是(A)AmDm5(2019广东)已知x1、x2是一元二次方程x22x0的两个实数根,下列结论错误的是(D)Ax1x2Bx2x10Cx1x22Dx1x226(2019衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了。
15、第6讲 一元二次方程,总纲目录,泰安考情分析,基础知识过关,知识点一 一元二次方程的相关概念,1.一元二次方程:只含有 一个 未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程.一元二次方程的一般形式是 ax2+bx+c=0(a0) ,其中ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c叫做 常数项 . 温馨提示 判定一个方程是不是一元二次方程时要注意以下三 点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)方程是整式方程. 一元二次方程的一般形式要注意二次项系数a0这一条件.,2.一元二次方程的解:使方程左右两边 相等 。
16、第二章 方程与不等式,第一部分 基础过关,第3讲 一元二次方程,3,考情通览,4,5,1一元二次方程 (1)一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程 (2)一元二次方程的一般形式:ax2bxc0(a,b,c是常数,且a0) (3)一元二次方程的解的概念:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,知识梳理,要点回顾,6,1.(1)若(m2)xm22mx10是关于x的一元二次方程,则m的值为_. (2)将方程x22x153x化为一般形式为_,其中a_,b_,c_. (3)已知x1是关于x的一元二次方程x2ax2b0的解,则2a4b( ) A2。
17、 第10讲 一元二次方程1. 下列方程中是关于x的一元二次方程的是(C)Ax20 Bax2bxc0C(x1)(x2)1 D3x22xy5y202. (2019遂宁)已知关于x的一元二次方程(a1)x22xa210有一个根为x0,则a的值为(D)A0 B1 C1 D13. 用配方法解一元二次方程x24x5时,此方程可变形为(D)A(x2)21 B(x2)21 C(x2)29 D(x2)294. 一元二次方程x2x0的根是(D)Ax1,x2 Bx12,x22Cx1x2 Dx1x25. 关于x的一元二次。
18、第10讲 一元二次方程,一、一元二次方程的有关定义 1. 一元二次方程的概念:只含有_未知数,并且未知数的最高次数是_,这样的整式方程就是一元二次方程 2. 一般表达式:_,其中_是二次项,_叫二次项系数;_是一次项,_叫一次项系数,_是常数项二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式 3. 一元二次方程的解:使一元二次方程两边相等的_的值,就是一元二次方程的解,一个,2,ax2bxc0(a0),ax2,a,bx,b,c,未知数,二、一元二次方程的解法 1. 直接开平方法:适用于能。