第28讲概率 (参考用时:30分钟) A层(基础) 1.(2019武汉)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是(B) (A)3个球都是黑球(B)3个球都是白球 (C)3个球中有黑球(D)3个球中有白球 解析:A.3个球都是
2020广西中考数学一轮复习课件第33讲Tag内容描述:
1、第28讲概率(参考用时:30分钟)A层(基础)1.(2019武汉)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是(B)(A)3个球都是黑球(B)3个球都是白球(C)3个球中有黑球(D)3个球中有白球解析:A.3个球都是黑球是随机事件;B.3个球都是白球是不可能事件;C.3个球中有黑球是必然事件;D.3个球中有白球是随机事件.故选B.2.下列说法正确的是(D)(A)袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球(B)天气预报“明天降水概率10%”,是指明天有10%的时间会下雨。
2、模块八统计与概率第27讲统计(参考用时:40分钟)A层(基础)1.(2019济宁)以下调查中,适宜全面调查的是(B)(A)调查某批次汽车的抗撞击能力(B)调查某班学生的身高情况(C)调查春节联欢晚会的收视率(D)调查济宁市居民日平均用水量解析:A.调查有破坏性,适合抽样调查,故A选项错误;B.调查人数少,适合全面调查,故B选项正确;C.调查范围广,结果不要求精确,适合抽样调查,故C选项错误;D.调查人数多,范围广,适于抽样调查,故D选项错误.故选B.2.今年某市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题。
3、第3讲分式(参考用时:40分钟)A层(基础)1.若分式x2-9x+3的值为零,则x的值为(D)(A)3 (B)0 (C)-3 (D)3解析:分式x2-9x+3的值为零,x2-9=0且x+30.解得x=3.故选D.2.(2019临沂)计算a2a-1-a-1的正确结果是(B)(A)-1a-1 (B)1a-1(C)-2a-1a-1(D)2a-1a-1解析:原式=a2a-1-(a+1)=a2a-1-a2-1a-1=1a-1.故选B.3.若分式2x-y3x2y的x和y均扩大为原来各自的10倍,则分式的值(C)(A)不变(B)是原分式值的110(C)是原分式值的1100(D)是原分式值的11 000解析:分式2x-y3x2y的x和y均扩大为原来各自的10倍,得20x-10y3(10x)2(10y)=2x-y300x2y=11002x-y3x2y.故选C.4.(2019北京)。
4、第7讲 分式方程,总纲目录,泰安考情分析,基础知识过关,知识点一 分式方程及其解法,1.分式方程:分母中含有 未知数 的方程叫做分式方程.,2.解分式方程的基本思想:分式方程 整式 方程.,3.解分式方程的步骤 (1)去分母:方程的两边同乘各个分式的最简公分母,转化为整式 方程; (2)解整式方程; (3)验根:把根代入 最简公分母 中,使 最简公分母为零 的根是增根,应舍去.,4.增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根,在方程变形时,方程两边同乘值为0的整式就会产生增根.,知识点二 分式方程的应用,1.类似于列整式方程解应。
5、第1讲 实数及其运算,总纲目录,泰安考情分析,基础知识过关,知识点一 实数及其分类,1.实数: 有理数 和无理数统称为实数, 整数 和分数统称为有理数.,2.实数的分类 实数,温馨提示 1.常见的无理数类型:根号型,如 、 等开不尽 方的实数;含型,如 、+5等化至最简后含的数;三角函数型,如sin 60、tan 60等;省略型,如1.010 010 001(每相邻两个1之间0的个数依次增加1)等无限不循环小数.,2.在无理数常见的类型中,三角函数表示的数不一定都是无理数, 如sin 30等.,知识点二 实数的相关概念及性质,温馨提示 1.绝对值是a(a0)的数有两个,它们互为相反数,即a.。
6、第二章 方程与不等式,第一部分 基础过关,第3讲 一元二次方程,3,考情通览,4,5,1一元二次方程 (1)一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程 (2)一元二次方程的一般形式:ax2bxc0(a,b,c是常数,且a0) (3)一元二次方程的解的概念:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,知识梳理,要点回顾,6,1.(1)若(m2)xm22mx10是关于x的一元二次方程,则m的值为_. (2)将方程x22x153x化为一般形式为_,其中a_,b_,c_. (3)已知x1是关于x的一元二次方程x2ax2b0的解,则2a4b( ) A2。
7、1.代数式 由数和字母用 连接所成的式子,称为代数式,单独一个数或一个字母也是代数式. 2.列代数式 在解决实际问题时,常常先把问题中有关的数量用代数式表示出来,即列代数式. 3.代数式的值 一般地,用 代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.,第2讲 整式与因式分解,运算符号,数值,代数式,整式及其运算,单项式,1.整式的有关概念 (1)整式: 与 统称为整式. (2)单项式:由 的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.单项式中的 叫做这个单项式的系数,一个单项式中,所有字母的 叫做这个单。
8、第23讲 和圆有关的计算,与正多边形和圆有关的概念和计算,1.正多边形和圆的关系 (1)任何一个正多边形都有一个 圆和一个 圆.这两个圆有公共的圆心,称其为正多边形的中心.外接圆的 叫做正多边形的半径,内切圆的 叫做正多边形的边心距.正多边形每一条边所对的 的圆心角都相等,叫做正多边形的中心角. (2)把圆分成n(n2)等份,依次连结各分点所得的多边形是这个圆的一个 .,外接,内切,半径,半径,外接圆,内接正n边形,2.与正多边形有关的计算,如图所示,(1)正n边形的中心角 n(AOB)= ,半径Rn(OA)、边心距rn(OC)和边长的一半(AC)构成 三角形.,直角,弧长。
9、第一章 数与式,第1讲 实数,第一章 数与式,2020年广东中考复习课件,第一章 数与式,2020年广东中考复习课件,第一章 数与式,1.理解有理数的意义,能用数轴上的点表示有理数,能比,较有理数的大小.,2.借助数轴理解相反数和绝对值的意义,掌握有理数的相,反数与绝对值,知道|a|的含义.,3.会用科学记数法表示数(包括在计算器上表示).,4.理解乘方的意义,掌握有理数的加、减、乘、除、乘方,及简单的混合运算(以三步为主).,5.理解有理数的运算律,并能运用运算律简化运算,能运,用有理数的运算解决简单的问题.,6.了解无理数和实数的概念,知道实数。
10、第26讲正 方 形1. 下列说法不正确的是(D)A一组邻边相等的矩形是正方形B对角线相等的菱形是正方形C对角线互相垂直的矩形是正方形D有一个角是直角的平行四边形是正方形2. 如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有(C)A4个 B6个 C8个 D10个3. 如图,在正方形ABCD的外侧作等边ADE,则AEB的度数为(C)A10 B12.5 C15 D20第3题图 第4题图4. 如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A处,得新正方形ABCD,新正方形与原正方形重叠部分(图中阴影部分)的面积是(B)A. B. C1 D. 5. 如图,将正方形。
11、第四章 三角形,第一部分 基础过关,第1讲 线、角、相交线与平行线,3,考情通览,4,5,1线 (1)直线:两点确定一条直线,直线无法测量; 射线:射线有且只有一个端点,射线无法测量; 线段:“两点之间线段最短” (2)垂直:若两条线相交的夹角为90,则这两条直线相互垂直同一平面内,过一点有且只有一条直线与已知直线垂直,知识梳理,要点回顾,6,(3)角平分线 性质:角平分上线的点到这个角两边的距离相等 判定:到角两边的距离相等的点在角的平分线上 (4)垂直平分线 性质:垂直平分线上的点到线段两个端点的距离相等 判定:到线段两个端点的距离。
12、第二章 方程与不等式,第一部分 基础过关,第5讲 一元一次不等式(组),3,考情通览,4,5,1不等式的有关概念 (1)不等式的概念及分类 用不等号(“” “” “” “”或“”)表示不等关系的式子叫做不等式 不等式常分两类:表示大小关系的不等式;表示不等关系的不等式,知识梳理,要点回顾,6,常见不等式的基本语言有: 若x是正数,则x0;若x是负数,则x0; 若x是非负数,则x0;若x是非正数,则x0; 若x大于y,则xy; 若x小于y,则xy; 若x不小于y,则xy;若x不大于y,则xy. (2)不等式的解集的概念 一个含有未知数的不等式的解的全体叫做不等式的解集 。
13、第二章 方程与不等式,第一部分 基础过关,第1讲 一元一次方程,3,考情通览,4,5,1方程 (1)方程的概念:含有未知数的等式,叫做方程 (2)方程的解的概念:能使方程左右两边相等的未知数的值,叫做方程的解,知识梳理,要点回顾,6,1.(1)下列四个式子中,是方程的是( ) A325 B3x21 C2x30 Da22abb2 (2)已知x2是关于x的方程3xa0的一个解,则a的值是_.,B,即时演练,6,7,要点回顾,8,2.(1)下列变形中错误的是( ) A如果xy,那么x2y2 B如果xy,那么x1y1 C如果x3,那么xy3y D如果x23x,那么x3,D,即时演练,9,D,10,3一元一次方程 (1)一元一次方程的概念:只含。
14、第21讲 多边形与平行四边形1. 一个多边形的内角和是720,则这个多边形的边数为(C)A4 B5 C6 D72. 正多边形的一个外角等于30,则这个多边形的边数为(C)A6 B9 C12 D153. 正六边形的每个内角都是(D)A60 B80 C100 D1204. 下列多边形中,不能够单独铺满地面的是(C)A正三角形 B正方形 C正五边形 D正六边形5. 不能判定一个四边形是平行四边形的条件是(B)A两组对边分别平行 B一组对边平行,另一组对边相等C一组对边平行且相等 。
15、第11讲 反比例函数,反比例函数的有关概念,不等于0,1.反比例函数 形如 (k是常数,k0)的函数叫做反比例函数.反比例函数中,自变量的取值范围是 的一切实数. 2.反比例函数的表达式的三种形式 (1)y= (k0,k为常数); (2)y= (k0,k为常数); (3)xy= (k0,k为常数),kx-1,k,反比例函数的图象与性质,双曲线,原点,一、三,减小,二、四,增大,|k|,求反比例函数关系式的方法步骤,2.代入图象上一个点的坐标,即x,y的一对对应值,求出k的值. 3.写出关系式.,反比例函数与一次函数的图象交点的求法,反比例函数的应用,应用反比例函数解决实际生活中成反比例关系的问题。
16、1.各象限内点的坐标的符号特征 第一象限 ;第二象限 ; 第三象限 ;第四象限 . 2.坐标轴上点的坐标特征 点P(x,y)在x轴上 ,x为任意实数; 点P(x,y)在y轴上 ,y为任意实数; 点P(x,y)在坐标原点 .,模块三 函 数 第9讲 函数及其图象,平面内点的坐标,(+,+),(-,+),(-,-),(+,-),y=0,x=0,x=0,y=0,特殊点的坐标特征(常考点),纵坐标,1.平行于坐标轴的直线上的点的坐标特征 (1)平行于x轴(或垂直于y轴)的直线上点的 相同,横坐标为不相等的实数. (2)平行于y轴(或垂直于x轴)的直线上点的 相同,纵坐标为不相等的实数. 2.各象限角平分线上的点的坐标特征 (1)第。
17、第14讲 函数的综合应用,一次函数的应用,一次函数最优化问题,首先求出一次函数表达式,再求出自变量的取值范围,将表达式与自变量的取值范围结合在一起,利用一次函数的增减性,确定最优方案.,反比例函数的应用,反比例函数与一次函数的综合,在符合条件下把握要点,确定分段函数.,二次函数的应用,二次函数的最值的确定方法 (1)配方法:将y=ax2+bx+c化成y=a(x-h)2+k的形式,当自变量x= 时,y有最大(小)值= .,h,k,(2)公式法:如果函数y=ax2+bx+c在顶点处取得最大(小)值,即当x= 时, y有最大(小)值= .,一次函数的最优化问题,例1 (2018湘西)某商店销售A型。