精准培优专练 2020届高三好教育精准培优专练 培优点三 含导函数的抽象函数的构造 一、构造和差函数 对于,可构造,则单调递增 例1:已知的导函数满足且,则不等式的解集是 二、构造积函数 对于,可构造,则单调递增 (特例:对于,可构造,则单调递增) 例2:设函数是定义在上的可导函数,其导函数为,且有
2020届高三精准培优专练二 函数零点理 学生版Tag内容描述:
1、精准培优专练2020届高三好教育精准培优专练培优点三 含导函数的抽象函数的构造一、构造和差函数对于,可构造,则单调递增例1:已知的导函数满足且,则不等式的解集是 二、构造积函数对于,可构造,则单调递增(特例:对于,可构造,则单调递增)例2:设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )ABCD三、构造商函数对于,可构造,则单调递增(特例:对于,可构造,则单调递增)例3:设定义域为的函数满足,则不等式的解集为 对点增分集训一、选择题1已知函数的导函数为,若,则不等式的解集为( )ABCD2已知定义。
2、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_三、通过三角恒等变换,求目标函数的单调区间及值域例3:设函数,(1)已知,函数是偶函数,求的值;(2)求函数的单调区间及值域对点增分集训一、选择题1已知,则等于( )ABCD2已知角的终边经过点,则( )ABCD3下列不等式中,成。
3、精准培优专练2020届高三好教育精准培优专练培优点二 函数的零点一、求函数的零点例1:若幂函数的图象过点,则函数的零点是( )ABCD【答案】B【解析】设,则,故,所以,由,得,所以函数的零点为二、根据零点求解析式中的参数值例2:若函数与存在相同的零点,则的值为( )A或B或C或D或【答案】C【解析】由,解得或函数与存在相同的零点,也是方程的根即或,解得或三、零点存在性定理应用例3:函数一定存在零点的区间是( )ABCD【答案】B【解析】在上单调递增,根据零点存在性定理,易知B选项符合条件四、讨论含参数方程根的个数或函数。
4、精准培优专练2020届高三好教育精准培优专练培优点二 函数的零点一、求函数的零点例1:若幂函数的图象过点,则函数的零点是( )ABCD二、根据零点求解析式中的参数值例2:若函数与存在相同的零点,则的值为( )A或B或C或D或三、零点存在性定理应用例3:函数一定存在零点的区间是( )ABCD四、讨论含参数方程根的个数或函数零点的个数例4:函数在区间上零点的个数为( )ABCD五、根据函数零点的个数求参数范围例5:已知函数,若恰好有个零点,则的取值范围为( )ABCD六、根据函数零点的分布求参数范围例6:函数的一个零点在区间内,则实数。
5、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD【答案】B【解析】由题意可知原函数是上的增函数,故根据零点存在定理得到零点存在于上,故选B二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD【答案】B【解析】函数是上的偶函数,可得,又,可得,故可得,即,即函数的周期是,又时,要研究方程在区间上解的个数,可将问题转化为与在区间有几个交点画出两函数图象如下,由图知两函数图象有个交点。
6、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD三、求函数零点例3:已知定义在上的奇函数满足,当时,则函数在区间上所有零点之和( )ABCD四、根据函数零点情况求参数的取值范围例4:函数,方程有个不相等实根,则的取值范围是( )ABCD五、二分法例5:在用二分法求函数在区间上的唯一零点的过程中,取区间上的中点,若,则函数在区间上的唯一零。