欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020届高三精准培优专练六 三角函数文 学生版

精准培优专练 2020届高三好教育精准培优专练 培优点七 解三角形 一、正余弦定理的综合应用 例1:的内角,的对边分别为,已知,则的最小值为( ) ABCD 【答案】B 【解析】在中, 由正弦定理可得, 即, 又, 因为,所以两边平方可得, 由,可得,解得, 当且仅当时等号成立, 又, 所以的最小值

2020届高三精准培优专练六 三角函数文 学生版Tag内容描述:

1、精准培优专练2020届高三好教育精准培优专练培优点七 解三角形一、正余弦定理的综合应用例1:的内角,的对边分别为,已知,则的最小值为( )ABCD【答案】B【解析】在中,由正弦定理可得,即,又,因为,所以两边平方可得,由,可得,解得,当且仅当时等号成立,又,所以的最小值为故选B二、正余弦定理与三角函数图象性质的综合应用例2:已知函数(1)若,求函数的值域;(2)设的三个内角,所对的边分别为,若为锐角且,求的值【答案】(1);(2)【解析】(1),由,得,即函数的值域为(2)由,得,又由,解得,在中,由余弦定理,解得。

2、精准培优专练2020届高三好教育精准培优专练培优点三 含导函数的抽象函数的构造一、含导函数的抽象函数的构造例1:已知定义在上的可导函数的导函数为,满足,且为偶函数,则不等式的解集为_例2:已知,曲线在处的切线方程为(1)求,的值;(2)求在上的最大值;(3)证明:当时,对点增分集训一、选择题1设函数在定义域内可导,的图像如图所示,则导函数的图像可能为( )ABCD2曲线在点处的切线与轴交点的纵坐标是( )ABCD3已知函数的导函数为,且满足,则( )ABCD4曲线在点处的切线方程是( )ABCD5函数的极小值点是( )ABCD6函数在处。

3、精准培优专练2020届高三好教育精准培优专练培优点七 解三角形一、正弦定理的运用例1:的内角,的对边分别为,若,则的值为( )ABCD或二、余弦定理的运用例2:在中,角,所对的边分别为,若,则当角取得最大值时,的周长为( )ABCD三、正弦定理与余弦定理的综合例3:在中,角,的对边分别为,若,且,则的最小内角的余弦值为( )ABCD对点增分集训一、选择题1在平面四边形中,则( )ABCD2在中,三边长分别为,最小角的余弦值为,则这个三角形的面积为( )ABCD3在中,内角,的对边分别为,若,且,则( )ABCD4已知的内角,的对边分别为。

4、精准培优专练2020届高三好教育精准培优专练培优点二 函数的零点一、求函数的零点例1:若幂函数的图象过点,则函数的零点是( )ABCD二、根据零点求解析式中的参数值例2:若函数与存在相同的零点,则的值为( )A或B或C或D或三、零点存在性定理应用例3:函数一定存在零点的区间是( )ABCD四、讨论含参数方程根的个数或函数零点的个数例4:函数在区间上零点的个数为( )ABCD五、根据函数零点的个数求参数范围例5:已知函数,若恰好有个零点,则的取值范围为( )ABCD六、根据函数零点的分布求参数范围例6:函数的一个零点在区间内,则实数。

5、精准培优专练2020届高三好教育精准培优专练培优点七 解三角形一、正余弦定理的综合应用例1:的内角,的对边分别为,已知,则的最小值为( )ABCD二、正余弦定理与三角函数图象性质的综合应用例2:已知函数(1)若,求函数的值域;(2)设的三个内角,所对的边分别为,若为锐角且,求的值三、三角函数模型及其应用例3:某动物园管理处计划利用空地建设一个开放性的三角形场地(如图),测得,在此三角形场地中挖去一个正三角形形状(如图)的人工湖,该正三角形的顶点在场地的边界线上,则人工湖面积的最小值为 对点增分集训一、选择题1在。

6、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【答案】D【解析】根据题意,故只需把函数的图象上所有的点,向右平移个单位长度,可得到函数的图象,故答案为D二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_【答案】【解析】由函数图象可知,又,所以,因为函数图象过点,代入解析式可知,因为,所以,所以函数解析式为三、通。

7、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD【答案】C【解析】二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD【答案】D【解析】向右平移个单位,表达式变为,再每一点的横坐标缩短到原来的一半,则表达式变为,而当时,知所得函数图像的一条对称轴方程是三、三角函数的性质例3:若函数是偶函数,则( )ABCD【答案】C【解析】由是偶函数,可得,即,可得,则,当时,可得。

8、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_三、通过三角恒等变换,求目标函数的单调区间及值域例3:设函数,(1)已知,函数是偶函数,求的值;(2)求函数的单调区间及值域对点增分集训一、选择题1已知,则等于( )ABCD2已知角的终边经过点,则( )ABCD3下列不等式中,成。

9、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD三、三角函数的性质例3:若函数是偶函数,则( )ABCD四、三角函数的值域与最值例4:设函数(1)求函数的单调递增区间;(2)当时,的最小值为,求的值对点增分集训一、选择题1函数是( )A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数。

【2020届高三精准培优专练六 三角函数文 学生版】相关DOC文档
2020届高三精准培优专练七 解三角形(文) 教师版
2020届高三精准培优专练三 含导函数的抽象函数的构造(文) 学生版
2020届高三精准培优专练七 解三角形(理) 学生版
2020届高三精准培优专练二 函数的零点(文) 学生版
2020届高三精准培优专练七 解三角形(文) 学生版
2020届高三精准培优专练六 三角函数(理) 教师版
2020届高三精准培优专练六 三角函数(文) 教师版
2020届高三精准培优专练六 三角函数(理) 学生版
2020届高三精准培优专练六 三角函数(文) 学生版
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开