欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020届高三精准培优专练十七 离心率文 教师版

精准培优专练 培优点十七 有关植物激素的实验设计 比 一、常见的有关生长素的实验设计方法 应用1:验证生长素的产生部位在尖端 典例1. 为了验证胚芽鞘尖端确实能产生促进生长的生长素,某科研小组用燕麦胚芽鞘和琼脂块等材料进行如下实验: 去掉胚芽鞘尖端不生长,不弯曲;接触过尖端的琼脂块放在胚芽鞘切面的左

2020届高三精准培优专练十七 离心率文 教师版Tag内容描述:

1、精准培优专练培优点十七 有关植物激素的实验设计比一、常见的有关生长素的实验设计方法应用1:验证生长素的产生部位在尖端典例1. 为了验证胚芽鞘尖端确实能产生促进生长的生长素,某科研小组用燕麦胚芽鞘和琼脂块等材料进行如下实验:去掉胚芽鞘尖端不生长,不弯曲;接触过尖端的琼脂块放在胚芽鞘切面的左侧弯向右侧生长;空白琼脂块放在胚芽鞘切面的左侧不生长,不弯曲。下列有关实验分析正确的是()A以上三组实验还需要给予单侧光照射B第组实验证明了琼脂能抑制胚芽鞘的生长C造成第、组实验结果相同的原理不同D第组处理会导致胚芽鞘尖端。

2、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD【答案】C【解析】二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD【答案】D【解析】向右平移个单位,表达式变为,再每一点的横坐标缩短到原来的一半,则表达式变为,而当时,知所得函数图像的一条对称轴方程是三、三角函数的性质例3:若函数是偶函数,则( )ABCD【答案】C【解析】由是偶函数,可得,即,可得,则,当时,可得。

3、精准培优专练2020届高三好教育精准培优专练培优点十八 圆锥曲线综合一、弦长问题例1:过双曲线的右焦点作倾斜角为的弦,求:(1)弦的中点到点的距离;(2)弦的长【答案】(1);(2)【解析】(1)双曲线的右焦点,直线的方程为联立,得设,则,设弦的中点的坐标为,则,所以(2)由(1),知二、定值问题例2:设抛物线的焦点为,抛物线上的点到轴的距离等于(1)求抛物线的方程;(2)已知经过抛物线的焦点的直线与抛物线交于,两点,证明:为定值【答案】(1);(2)证明见解析【解析】(1)由题意可得,抛物线上点到焦点的距离等于。

4、精准培优专练2020届高三好教育精准培优专练培优点十五 平行垂直的证明一、平行的证明例1:如图,在四棱锥中,底面是平行四边形,点在上,(1)证明:平面;(2)若是中点,点在上,平面,求线段的长【答案】(1)证明见解析;(2)【解析】(1)底面是平行四边形,平面,平面,平面(2)平面,设过且与平面平行的平面与交与点,与交于点,则,又是平行四边形,平面,是中点,是中点,二、垂直的证明例2:如图,在直三棱柱中,点是与的交点,点在线段上,平面(1)求证:;(2)求证:平面【答案】(1)证明见解析;(2)证明见解析【解析。

5、精准培优专练2020届高三好教育精准培优专练培优点十七 圆锥曲线的几何性质一、椭圆的几何性质例1:已知点是椭圆上轴右侧的一点,且以点及焦点,为顶点的三角形的面积等于,则点的坐标为_【答案】或【解析】,是椭圆的左、右焦点,则,设是椭圆上的一点,由三角形的面积公式可知,即,将代入椭圆方程得,解得,点的坐标为,二、抛物线的几何性质例2:如图,已知抛物线的焦点为,过点且斜率为的直线依次交抛物线及圆于点,四点,则的值是( )ABCD【答案】B【解析】设,代入抛物线方程消去,得,则三、双曲线的几何性质例3:过双曲线的右支。

6、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、不等式恒成立问题例1:已知,不等式恒成立,则的取值范围为( )ABCD【答案】C【解析】把原不等式的左端看成关于的一次函数,记,则对于任意的恒成立,易知只需,且即可,联立解得或故选C例2:不等式对任意实数恒成立,则实数的取值范围为( )ABCD【答案】A【解析】由绝对值的几何意义易知的最小值为,所以不等式对任意实数恒成立,只需,解得故选A例3:已知,且,若恒成立,则实数的取值范围是( )ABCD【答案】D【解析】,二、函数恒成立问题例4:当时,指数函数恒成。

7、精准培优专练2020届高三好教育精准培优专练培优点八 平面向量一、平面向量的线性运算例1:如图,三个半径为的圆两两外切(,为圆心),且等边的每一边都与其中的两个圆相切,则 【答案】【解析】由题意易得,所以二、平面向量的坐标运算例2:已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针旋转角得到点若平面内点,点,把点绕点顺时针方向旋转后得到点,则点的坐标为( )ABCD【答案】A【解析】,顺时针旋转时,代入得,即,故选A三、平面向量数量积例3:如图在矩形中,点为的中点,点在上,若,则的值是。

8、精准培优专练2020届高三好教育精准培优专练培优点九 线性规划一、求线性目标的最值例1:设变量,满足约束条件,则目标函数的最大值为 【答案】【解析】由约束条件,作出可行域如图,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为二、求非线性目标的最值例2:若满足约束条件,则的取值范围为( )ABCD【答案】A【解析】作出约束条件所表示的的可行域如图:表示区域内的点与点连线的斜率,联立方程组,可解得,同理可得,当直线经过点时,斜率取最小值:;当直线经过点时,斜率取最大值,则的取值范围是,故选A三。

9、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、变化率及导数的概念例1:已知,等于( )ABCD【答案】C【解析】,故选C二、导数的几何意义例2:已知直线与曲线相切,则的值为( )ABCD【答案】B【解析】设切点,则,又,故选B三、导数的图象例3:若函数的导函数的图象如图所示,则的图象可能( )ABCD【答案】C【解析】由,可得有两个零点,且,当或时,即函数为减函数;当时,函数为增函数,即当,函数取得极小值,当,函数取得极大值,故选C四、导数的极值例4:已知函数有两个极值点,则的范围为 【答案】【解析】由。

10、精准培优专练2020届高三好教育精准培优专练培优点十九 几何概型一、与长度有关的几何概型例1:某公司的班车在,发车,小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是_【答案】【解析】如图所示,画出时间轴小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或上时,才能保证他等车的时间不超过分钟,根据几何概型的概率计算公式可得所求概率为例2:在区间上随机地取一个数,则事件“”发生的概率为_【答案】【解析】由,得,得由几何概型的概率计算公式可得所求概率为二、。

11、精准培优专练培优点十七 溶液pH计算的情况一溶液pH计算的情况相关计算1单一溶液pH的计算典例1常温下,将pH1的硫酸溶液平均分成两等份,一份加入适量水,另一份加入与该硫酸溶液物质的量浓度相同的氢氧化钠溶液,两者pH都增大了1。则加入水和加入NaOH溶液的体积比约为()A111 B101 C61 D51【答案】C【解析】设所取每份硫酸的体积为V1,使硫酸由pH1变为pH2,所加水的体积为9V1;设所加NaOH溶液的体积为V2,则有c(H+)molL10.01molL1,解得V2V1,即V水VNaOH61。2混合型(多种溶液混合)典例225时,pH5的盐酸和pH9的氢氧化钠溶液以体积比119混合。

12、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、分组求和法例1:设公差不为的等差数列的前项和为,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1)由题意,可求得,公差为,即,解得(舍)或,所以,(2)二、裂项相消法例2:设数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1),是公比为的等比数列,又,解得,是以为首项,公比为的等比数列,通项公式为(2),数列的前项和三、错位相减法例3:在数列中,有,。

13、精准培优专练2020届高三好教育精准培优专练培优点十四 外接球一、构造正方体与长方体的外接球问题例1:已知直三棱柱的个顶点都在球的球面上,若,则球的半径为( )ABCD【答案】C【解析】,直三棱柱的底面为直角三角形,把直三棱柱补成长方体,则长方体的体对角线就是球的直径,即球的半径为二、与正棱锥有关的外接球问题例2:一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )ABCD 【答案】C【解析】正三棱锥的四个顶点都在半径为的球面上,且底面的三个顶点在该球的大圆上。

14、精准培优专练2020届高三好教育精准培优专练培优点十七 影响类问题的突破一、常考“影响”归纳(一)影响类设问影响类设问常以区域图为信息载体,结合重大工程建设、产业活动、人口迁移、城市化等,就区域内典型地理现象或地理事物进行命题,常见设问形式有“带来的影响有哪些”“产生什么影响”“试分析对的影响”“分析说明对的有利影响或不利影响”等。影响类设问一般要从多角度分析,如有利影响和不利影响,对本地区(事物)的影响和对其他地区(事物)的影响,现在的影响和将来的可能影响,对社会、经济和生态的影响等。注意如果设问。

15、精准培优专练1本知识点每年必考,近几年的考查重点,主要是在选择题中考查磁场及磁感应强度、电流的磁场及安培定则的应用。2注意要点:分析安培力时,要注意将立体图转化为平面图。典例1.(2019全国I卷17)如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接。已知导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为()A2F B1.5F C0.5F D0【解析】设三根相同的导体棒的电阻均为R,长度均为l,其中ML和LN为串联关系,总电阻为2R。由并联电路特点。

16、精准培优专练2020届高三好教育精准培优专练培优点十七 完形填空之夹叙夹议文一、真题在线(2019浙江卷)There are lots of ways to raise awareness for a cause. Usually, the _1_ the idea is, the more it gets noticed. And thats precisely why one _2_ Frenchman has caught our attention.Baptiste Dubanchet is biking across Europe, surviving _3_ on discarded(丢弃) food. The three-month 1900-mile journey from Paris to Warsaw is Dubanchets _4_ of raising awareness of food waste in Europe and throughout th。

17、精准培优专练2020届高三好教育精准培优专练培优点十八 离心率一、椭圆的离心率例1:已知椭圆的长轴长是短轴长的倍,则该椭圆的离心率为( )ABCD二、双曲线的离心率例2:已知双曲线,则双曲线的离心率为( )ABCD对点增分集训一、选择题1已知焦点在轴上的椭圆的离心率为,则( )A6BC4D22已知双曲线,则的离心率为( )ABCD23已知椭圆的长轴长为6,短轴长为,则该椭圆的离心率为( )ABCD4已知双曲线的离心率为,则双曲线的焦距为( )A4B5C8D105已知双曲线的离心率为,点在双曲线上,则该双曲线的方程为( )ABCD6过椭圆的一个焦点的直线。

18、精准培优专练2020届高三好教育精准培优专练培优点十八 离心率一、椭圆的离心率例1:已知椭圆的长轴长是短轴长的倍,则该椭圆的离心率为( )ABCD【答案】C【解析】,故选C二、双曲线的离心率例2:已知双曲线,则双曲线的离心率为( )ABCD【答案】C【解析】由,得双曲线标准方程为,故本题正确选项C对点增分集训一、选择题1已知焦点在轴上的椭圆的离心率为,则( )A6BC4D2【答案】C【解析】焦点在轴上的椭圆,可得,椭圆的离心率为,可得,解得故选C2已知双曲线,则的离心率为( )ABCD2【答案】C【解析】由双曲线的方程得,又根据,解得。

19、精准培优专练2020届高三好教育精准培优专练培优点十七 离心率一、直接求出,或求出与的比值求解例1:已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为( )ABCD二、构造,的齐次式求解例2:已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )ABCD三、利用离心率的定义以及圆锥曲线的定义求解例3:已知,为双曲线的左、右焦点,点在上,且,则双曲线的离心率( )ABCD四、利用平面几何性质求解例4:设点为双曲线上一点,分别是左右焦点,是的内心,若,的面积,满足。

20、精准培优专练2020届高三好教育精准培优专练培优点十七 离心率一、直接求出,或求出与的比值求解例1:已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为( )ABCD【答案】B【解析】由题可得,抛物线的焦点坐标为,所以,所以,所以离心率二、构造,的齐次式求解例2:已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )ABCD【答案】D【解析】设直线,则与渐近线的交点为,因为是的中点,利用中点坐标公式,得,因为点在双曲线上,所以满足,整理得,解得三、利用离心。

【2020届高三精准培优专练十七 离心率文 教师版】相关DOC文档
2020届高三精准培优专练十七 有关植物激素的实验设计 生物 教师版
2020届高三精准培优专练六 三角函数(文) 教师版
2020届高三精准培优专练十八 圆锥曲线综合(文) 教师版
2020届高三精准培优专练十五 平行垂直的证明(文) 教师版
2020届高三精准培优专练十七 圆锥曲线的几何性质(理) 教师版
2020届高三精准培优专练四 恒成立问题(文) 教师版
2020届高三精准培优专练八 平面向量(文) 教师版
2020届高三精准培优专练九 线性规划(文) 教师版
2020届高三精准培优专练五 导数的应用(文) 教师版
2020届高三精准培优专练十九 几何概型(文) 教师版
2020届高三精准培优专练十七 溶液pH计算的情况 化学 教师版
2020届高三精准培优专练十二 数列求和(文) 教师版
2020届高三精准培优专练十四 外接球(文) 教师版
2020届高三精准培优专练十七影响类问题的突破(教师版)
2020届高三精准培优专练十七磁场安培力(教师版)
2020届高三精准培优专练十七 完形填空之夹叙夹议文(教师版)
2020届高三精准培优专练十八 离心率(理) 学生版
2020届高三精准培优专练十八 离心率(理) 教师版
2020届高三精准培优专练十七 离心率(文) 学生版
2020届高三精准培优专练十七 离心率(文) 教师版
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开