欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020届高三精准培优专练四 恒成立问题理 教师版

精准培优专练 2020届高三好教育精准培优专练 培优点十一 数列求通项公式 一、由数列的前几项求数列的通项公式 例1:根据数列的前几项,写出各数列的一个通项公式; (1),; (2),; (3),; (4), 【答案】(1),;(2),; (3),;(4) 【解析】(1)各数都是偶数,且最小为,所以

2020届高三精准培优专练四 恒成立问题理 教师版Tag内容描述:

1、精准培优专练2020届高三好教育精准培优专练培优点十一 数列求通项公式一、由数列的前几项求数列的通项公式例1:根据数列的前几项,写出各数列的一个通项公式;(1),;(2),;(3),;(4),【答案】(1),;(2),;(3),;(4)【解析】(1)各数都是偶数,且最小为,所以它的一个通项公式,(2)这个数列的前项的绝对值都等于序号与序号加的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式,(3)这个数列,去掉负号,可发现是一个等差数列,其首项为,公差为,所以它的一个通项公式为,(4)将原数列改写为,易知。

2、精准培优专练2020届高三好教育精准培优专练培优点十六 利用空间向量求夹角一、求直线与直线的夹角例1:在长方体中,则直线与所成角的余弦值为 【答案】【解析】在长方体中,以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则,设直线与所成角为,则,直线与所成角的余弦值为二、求直线与平面的夹角例2:正三棱柱的侧棱与底面边长相等,则与平面的夹角的余弦值为 【答案】【解析】设,以为原点,建立空间直角坐标系坐标系如图,则,又平面的一个法向量,设与平面的夹角为,则,故三、求平面与平面的夹角例3:正方体中,二面角的大小。

3、精准培优专练2020届高三好教育精准培优专练培优点十一 人口问题一、人口增长与人口问题【培优指南】高考主要考查人口问题的判断、人口问题产生的原因、人口问题的影响及应对措施。具体分析如下:1人口问题的判断首先,明确主要的人口问题有人口增长过快、人口老龄化、人口性别比失调等。其次,在解题时要注意对材料或图中数据信息的提取。关于人口问题的判断,经常通过关于人口的新概念切入,比如人口红利等,分析时要注意对新概念的理解,注意新概念中各人口年龄段的关系,根据各人口年龄段数据的变化,尤其是少儿人口和老年人口的变化,。

4、精准培优专练2020届高三好教育精准培优专练培优点十七 影响类问题的突破一、常考“影响”归纳(一)影响类设问影响类设问常以区域图为信息载体,结合重大工程建设、产业活动、人口迁移、城市化等,就区域内典型地理现象或地理事物进行命题,常见设问形式有“带来的影响有哪些”“产生什么影响”“试分析对的影响”“分析说明对的有利影响或不利影响”等。影响类设问一般要从多角度分析,如有利影响和不利影响,对本地区(事物)的影响和对其他地区(事物)的影响,现在的影响和将来的可能影响,对社会、经济和生态的影响等。注意如果设问。

5、精准培优专练2020届高三好教育精准培优专练培优点四 倒装句一、真题在线一、单项选择1.(2016江苏单项选择)Not until recently _ the development of tourist-related activities in the rural areas.A. they had encouragedB. had they encouragedC. did they encourageD. they encouraged【答案】C【解析】考查部分倒装。当not until所引导的时间状语放在句首的时候,主句要使用部分倒装句。排除AD项,B项为过去完成时,上下文中并没有体现出过去的过去的时间。句意:直到最近他们才鼓励在农村地区开展与旅游业有关的活动。故C正确。2.。

6、精准培优专练2020届高三好教育精准培优专练培优点十八 问题措施类问题的解决一、常见问题及措施(一)人口与城市化问题及解决措施问题表现解决措施人口问题发展中国家人口增长快,人口素质较低实行计划生育政策,控制人口增长;提高人口素质发达国家出现人口老龄化现象,人口增长缓慢,甚至呈负增长鼓励生育;接纳海外移民城市化问题环境问题:大气污染、水体污染、固体废弃物污染、噪声污染集中供热,合理布局有污染的企业,建立绿化隔离带;污水达标排放,建设污水处理厂;及时清理垃圾,实行分类回收利用;噪声大的工厂布局应远离城市。

7、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【答案】D【解析】根据题意,故只需把函数的图象上所有的点,向右平移个单位长度,可得到函数的图象,故答案为D二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_【答案】【解析】由函数图象可知,又,所以,因为函数图象过点,代入解析式可知,因为,所以,所以函数解析式为三、通。

8、精准培优专练2020届高三好教育精准培优专练培优点十九 圆锥曲线综合一、圆锥曲线综合例1:已知为坐标原点,分别是椭圆的左、右顶点,点在椭圆上且位于第一象限,点在轴上的投影为,且有(其中),的连线与轴交于点,与的交点恰为线段的中点,则椭圆的离心率为( )ABCD【答案】D【解析】设,则,由题意,得的横坐标为,由,得,直线的方程为,令,则,直线的方程为,直线的方程为,点,恰为线段的中点,整理可得,则例2:设,是双曲线(,)的左,右焦点,是坐标原点过作的一条渐近线的垂线,垂足为,若,则的离心率为( )ABCD【答案】C。

9、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD【答案】B【解析】由题意可知原函数是上的增函数,故根据零点存在定理得到零点存在于上,故选B二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD【答案】B【解析】函数是上的偶函数,可得,又,可得,故可得,即,即函数的周期是,又时,要研究方程在区间上解的个数,可将问题转化为与在区间有几个交点画出两函数图象如下,由图知两函数图象有个交点。

10、精准培优专练2020届高三好教育精准培优专练培优点十四 区域如何定位一、宏观判南北半球的判断判断依据南北半球自转方向逆时针北半球顺时针南半球纬度变化纬度值北高南低(自转线速度北小南大)北半球纬度值南高北低(自转线速度北大南小)南半球温度等温线北低南高;1月(2月)气温低;7月(8月)气温高北半球等温线北高南低;1月(2月)气温高;7月(8月)气温低南半球阴阳坡山地北坡为阴坡,南坡为阳坡北半球山地北坡为阳坡,南坡为阴坡南半球中低纬大洋环流中低纬大洋环流呈顺时针流动北半球中低纬大洋环流呈逆时针流动南半球水平运动。

11、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、求切线方程例1:曲线在点处的切线方程为 【答案】【解析】,结合导数的几何意义曲线可知在点处的切线方程的斜率为,切线方程为二、求单调区间和极值例2:已知函数(1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围【答案】(1)见解析;(2)【解析】(1),当时,此时在单调递增;当时,令,解得或;令,解得,此时在,单调递增,在单调递减;当时,令,解得或;令,解得,此时在,单调递增,在单调递减,综上可得,当时,在单调递增当时,在。

12、精准培优专练2020届高三好教育精准培优专练培优点二十 几何概型一、长度类几何概型例1:若是从区间中任取的一个实数,则函数无零点的概率是( )ABCD【答案】B【解析】方程无实解,则,即,又,其构成的区域长度为,从区间中任取一个实数构成的区域长度为,则方程无实解的概率是故选B二、面积类几何概型例2:(1)图形类几何概型例题2-1:如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是( )ABCD【答案】B【解析】设正方形的边长为,则圆的半径为,由几何概型的概率公式得,故答案为B(2。

13、精准培优专练2020届高三好教育精准培优专练培优点八 平面向量一、平面向量的建系坐标化应用例1:在中,边上的高为,则的最小值为 【答案】【解析】以所在的直线为轴,的中垂线为轴,建立如图所示平面直角的坐标系,则,即,故当时,取得最小值为,此时二、平面向量中三点共线问题例2:设,是两个不共线的单位向量,若满足,且,则当最小时,在与的夹角的余弦值为 【答案】【解析】作,且,三点共线,如图所示,当时,最小,又,为单位向量,即与的夹角的余弦值为三、平面向量与三角形的四心问题例3:已知,是平面内不共线三点,是的外心,。

14、精准培优专练2020届高三好教育精准培优专练培优点九 线性规划一、求目标函数的最值例1:已知、满足(1)若,求的最值;(2)若,求的最值;(3)若,求的最值【答案】(1),;(2),;(3),【解析】(1)画出可行域如图:画出直线,并平移得在点处最大,在点处最小由,求出为,由,求出为,(2)画出可行域如图:表示可行域内的点到原点的距离的平方,由图可在点处最大,在点处最小,(3)画出可行域如图:,表示可行域内的点与原点连线的斜率,由图可在点处最大,在点处最小由,可得为,二、根据目标函数最值求参数例2:已知,满足,。

15、精准培优专练2020届高三好教育精准培优专练培优点十三 环境问题一、环境问题【培优指南】1环境问题解答的基本方法2主要环境问题的防治措施主要问题具 体 措 施环境污染根本措施在于减少污染物排放(可通过提高利用率、废弃物经过净化处理后排放、使用环保原料和燃料等达到目的),同时加强绿化,以增强环境自净能力;对于全球性问题还需加强国际合作生态破坏治本在于恢复生态,因此首先要改变和停止不合理的人类活动,其次通过恢复植被、水域等增强环境的平衡、调节功能资源短缺要从“开源”(替代资源的开发、加强储量勘探等)和“节流”。

16、精准培优专练2020届高三好教育精准培优专练培优点十八 离心率一、椭圆的离心率例1:已知椭圆的长轴长是短轴长的倍,则该椭圆的离心率为( )ABCD【答案】C【解析】,故选C二、双曲线的离心率例2:已知双曲线,则双曲线的离心率为( )ABCD【答案】C【解析】由,得双曲线标准方程为,故本题正确选项C对点增分集训一、选择题1已知焦点在轴上的椭圆的离心率为,则( )A6BC4D2【答案】C【解析】焦点在轴上的椭圆,可得,椭圆的离心率为,可得,解得故选C2已知双曲线,则的离心率为( )ABCD2【答案】C【解析】由双曲线的方程得,又根据,解得。

17、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、公式法例1:已知在数列中,数列是公差为的等差数列,且(1)求数列,的通项公式;(2)求数列的前项和【答案】(1),;(2)【解析】(1),数列是公比为的等比数列,等差数列的公差为,(2)二、裂项相消法例2:已知数列是首项,公比的等比数列,数列满足,数列满足(1)求证:数列为等差数列;(2)求数列的前项和【答案】(1)证明见解析;(2)【解析】(1)证明:由已知得,故数列为等差数列(2),三、错位相减法例3:已知数列的前项和为,且(1)求数列的通项公。

18、精准培优专练2020届高三好教育精准培优专练培优点十二 资源问题一、自然资源的综合开发与利用【培优指南】1矿物能源(煤、石油、天然气)的开发条件评价(1)资源开发条件评价的内容区域资源开发条件的评价,一般可从三个方面进行:资源储量和开采条件(资源丰富、埋藏浅或露天、地质条件好的地区易开采);市场条件(位于或靠近经济发达地区、市场需求量大的地区优先开采);交通运输条件(对外交通便利的地区优先开采)。(2)能源资源开发的分析思路能源资源的开发可从基础好、拉动强、有保证三方面分析。基础好拉动强有保证:有便利的。

19、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、最值分析法例1:设,当时,恒成立,求的取值范围 二、参变量分离法例2:已知函数,如果当时,不等式恒成立,求实数的取值范围 三、数形结合法例3:已知不等式在上恒成立,则实数的取值范围是 对点增分集训一、选择题1已知,若对任意的,恒成立,则实数的取值范围是( )ABCD2已知函数,当时,不等式恒成立,则实数的取值范围是( )ABCD3已知,不等式在上恒成立,则的取值范围是( )ABCD4若不等式对任意恒成立,则的取值范围是( )ABCD5已知函数,若在上恒成立,则的取。

20、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、不等式恒成立问题例1:已知,不等式恒成立,则的取值范围为( )ABCD【答案】C【解析】把原不等式的左端看成关于的一次函数,记,则对于任意的恒成立,易知只需,且即可,联立解得或故选C例2:不等式对任意实数恒成立,则实数的取值范围为( )ABCD【答案】A【解析】由绝对值的几何意义易知的最小值为,所以不等式对任意实数恒成立,只需,解得故选A例3:已知,且,若恒成立,则实数的取值范围是( )ABCD【答案】D【解析】,二、函数恒成立问题例4:当时,指数函数恒成。

【2020届高三精准培优专练四 恒成立问题理 教师版】相关DOC文档
2020届高三精准培优专练十一 数列求通项公式(理) 教师版
2020届高三精准培优专练十六 利用空间向量求夹角(理) 教师版
2020届高三精准培优专练十一人口问题(教师版)
2020届高三精准培优专练十七影响类问题的突破(教师版)
2020届高三精准培优专练四 倒装句(教师版)
2020届高三精准培优专练十八问题措施类问题的解决(教师版)
2020届高三精准培优专练六 三角函数(理) 教师版
2020届高三精准培优专练十九 圆锥曲线综合(理) 教师版
2020届高三精准培优专练二 函数零点(理) 教师版
2020届高三精准培优专练十四区域定位问题(教师版)
2020届高三精准培优专练五 导数的应用(理) 教师版
2020届高三精准培优专练二十 几何概型(理) 教师版
2020届高三精准培优专练八 平面向量(理) 教师版
2020届高三精准培优专练九 线性规划(理) 教师版
2020届高三精准培优专练十三环境问题(教师版)
2020届高三精准培优专练十八 离心率(理) 教师版
2020届高三精准培优专练十二 数列求和(理) 教师版
2020届高三精准培优专练十二资源问题(教师版)
2020届高三精准培优专练四 恒成立问题(理) 学生版
2020届高三精准培优专练四 恒成立问题(文) 教师版
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开