欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020届高三精准培优专练五 导数的应用理 教师版

精准培优专练 1近几年对本知识点的的考查,主要集中在三个角度:通过点电荷形成的电场考查电场力的性质与能的性质;结合带电粒子的运动轨迹、电场线、等势面的关系考查电场的性质;通过图象考查公式UEd的应用。 2几点注意: (1)电场叠加问题要注意矢量性与对称性; (2)在匀强电场中,平行线上距离相等的两点

2020届高三精准培优专练五 导数的应用理 教师版Tag内容描述:

1、精准培优专练1近几年对本知识点的的考查,主要集中在三个角度:通过点电荷形成的电场考查电场力的性质与能的性质;结合带电粒子的运动轨迹、电场线、等势面的关系考查电场的性质;通过图象考查公式UEd的应用。2几点注意:(1)电场叠加问题要注意矢量性与对称性;(2)在匀强电场中,平行线上距离相等的两点间电势差相等;(3)在图象问题中,一般从图象的“点、线、面、斜”四个方向理解,x图象中斜率表示场强,Ex图象中面积表示电势差。典例1.(2019全国I卷15)如图,空间存在一方向水平向右的匀强磁场,两个带电小球P和Q用相同的绝缘细绳悬挂在。

2、精准培优专练2020届高三好教育精准培优专练培优点一 神奇的货币一、透析重难点,精培优等生1以具体生活情境为载体,正确认识商品的基本属性【解题技法】商品是使用价值和价值的统一体,使用价值是价值的物质承担者。所以商品的质量高,功能多而强大,人们才愿意消费它,该商品才能顺利地实现其价值。另外,使用价值是商品的自然属性,不同商品的使用价值能够满足人们的不同需要,在质上是不同的,不能进行量的比较,也不能说哪一种商品的使用价值比另一种好。典例1(2019新课标全国卷)近年来,提高供给质量是供给侧结构性改革的主攻方向。

3、精准培优专练2020届高三好教育精准培优专练培优点十一 数列求通项公式一、由数列的前几项求数列的通项公式例1:根据数列的前几项,写出各数列的一个通项公式;(1),;(2),;(3),;(4),【答案】(1),;(2),;(3),;(4)【解析】(1)各数都是偶数,且最小为,所以它的一个通项公式,(2)这个数列的前项的绝对值都等于序号与序号加的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式,(3)这个数列,去掉负号,可发现是一个等差数列,其首项为,公差为,所以它的一个通项公式为,(4)将原数列改写为,易知。

4、精准培优专练2020届高三好教育精准培优专练培优点十六 利用空间向量求夹角一、求直线与直线的夹角例1:在长方体中,则直线与所成角的余弦值为 【答案】【解析】在长方体中,以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则,设直线与所成角为,则,直线与所成角的余弦值为二、求直线与平面的夹角例2:正三棱柱的侧棱与底面边长相等,则与平面的夹角的余弦值为 【答案】【解析】设,以为原点,建立空间直角坐标系坐标系如图,则,又平面的一个法向量,设与平面的夹角为,则,故三、求平面与平面的夹角例3:正方体中,二面角的大小。

5、精准培优专练1从历年命题看,对共点力平衡的考查,主要在选择题中单独考查,同时对平衡问题的分析在后面的计算题中往往有所涉及。高考命题两大趋势:一是向着选择题单独考查的方向发展;二是选择题单独考查与电学综合考查并存。2解决平衡问题常用方法:(1)静态平衡:三力平衡一般用合成法,合成后力的问题转换成三角形问题;多力平衡一般用正交分解法;遇到多个有相互作用的物体时一般先整体后隔离。(2)动态平衡:三力动态平衡常用图解法、相似三角形法等,多力动态平衡问题常用解析法,涉及到摩擦力的时候要注意静摩擦力与滑动摩擦力的转。

6、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【答案】D【解析】根据题意,故只需把函数的图象上所有的点,向右平移个单位长度,可得到函数的图象,故答案为D二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_【答案】【解析】由函数图象可知,又,所以,因为函数图象过点,代入解析式可知,因为,所以,所以函数解析式为三、通。

7、精准培优专练2020届高三好教育精准培优专练培优点一 函数的图象与性质一、函数的单调性例1:对于函数,若,都有,为某一三角形的三条边,则称为“可构造三角形函数”,已知函数(为自然对数的底数)是“可构造三角形函数”,则实数的取值范围是( )ABCD【答案】D【解析】由题意可得:,对,恒成立,当时,满足条件,当时,在上单调递减,同理:,所以,当时,在上单调递增,同理:,综上可得:实数的取值范围是二、函数的奇偶性和对称性例2:设函数、分别是定义在上的奇函数和偶函数,且,若对,不等式恒成立,则实数的取值范围是( )AB。

8、精准培优专练2020届高三好教育精准培优专练培优点十七 圆锥曲线的几何性质一、椭圆的几何性质例1:已知点是椭圆上轴右侧的一点,且以点及焦点,为顶点的三角形的面积等于,则点的坐标为_【答案】或【解析】,是椭圆的左、右焦点,则,设是椭圆上的一点,由三角形的面积公式可知,即,将代入椭圆方程得,解得,点的坐标为,二、抛物线的几何性质例2:如图,已知抛物线的焦点为,过点且斜率为的直线依次交抛物线及圆于点,四点,则的值是( )ABCD【答案】B【解析】设,代入抛物线方程消去,得,则三、双曲线的几何性质例3:过双曲线的右支。

9、精准培优专练2020届高三好教育精准培优专练培优点五 收入与分配一、透析重难点,精培优等生1结合党和国家重大方针政策,考查我国的分配制度【解题技法】四种方法判定分配方式阐释依据范围(所有制)按劳分配只存在于公有制经济范围内。公有制经济中不一定都是按劳分配,另有按生产要素分配、福利性分配、社会保障收入等依据分配尺度凭借劳动获得的收入是劳动所得(公有制中属于按劳分配,非公有制中属于按劳动、管理、信息要素分配);凭借资本、土地等获得的收入是非劳动收入所得依据形式工资、奖金等是劳动收入;利息、股息、红利等是资本要。

10、精准培优专练2020届高三好教育精准培优专练培优点十九 圆锥曲线综合一、圆锥曲线综合例1:已知为坐标原点,分别是椭圆的左、右顶点,点在椭圆上且位于第一象限,点在轴上的投影为,且有(其中),的连线与轴交于点,与的交点恰为线段的中点,则椭圆的离心率为( )ABCD【答案】D【解析】设,则,由题意,得的横坐标为,由,得,直线的方程为,令,则,直线的方程为,直线的方程为,点,恰为线段的中点,整理可得,则例2:设,是双曲线(,)的左,右焦点,是坐标原点过作的一条渐近线的垂线,垂足为,若,则的离心率为( )ABCD【答案】C。

11、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD【答案】B【解析】由题意可知原函数是上的增函数,故根据零点存在定理得到零点存在于上,故选B二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD【答案】B【解析】函数是上的偶函数,可得,又,可得,故可得,即,即函数的周期是,又时,要研究方程在区间上解的个数,可将问题转化为与在区间有几个交点画出两函数图象如下,由图知两函数图象有个交点。

12、精准培优专练2020届高三好教育精准培优专练培优点五 强调句一、真题在线1.(2018天津卷单项选择)It was only when the car pulled up in front of our house we saw Lily in the passenger seat.A. which B. thatC. when D. where【答案】B【解析】考查强调句。句意:只有当汽车在我们房子前停下来我们才看到在乘客位置的莉莉。强调句型结构为:It is was+被强调部分(通常是主语、宾语或状语)+that/who(当强调主语且主语指人)+其他部分。本题强调时间状语only when the car pulled up in front of our house。故选B。2.(2017天津卷。

13、精准培优专练2020届高三好教育精准培优专练培优点二十 几何概型一、长度类几何概型例1:若是从区间中任取的一个实数,则函数无零点的概率是( )ABCD【答案】B【解析】方程无实解,则,即,又,其构成的区域长度为,从区间中任取一个实数构成的区域长度为,则方程无实解的概率是故选B二、面积类几何概型例2:(1)图形类几何概型例题2-1:如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是( )ABCD【答案】B【解析】设正方形的边长为,则圆的半径为,由几何概型的概率公式得,故答案为B(2。

14、精准培优专练2020届高三好教育精准培优专练培优点八 平面向量一、平面向量的建系坐标化应用例1:在中,边上的高为,则的最小值为 【答案】【解析】以所在的直线为轴,的中垂线为轴,建立如图所示平面直角的坐标系,则,即,故当时,取得最小值为,此时二、平面向量中三点共线问题例2:设,是两个不共线的单位向量,若满足,且,则当最小时,在与的夹角的余弦值为 【答案】【解析】作,且,三点共线,如图所示,当时,最小,又,为单位向量,即与的夹角的余弦值为三、平面向量与三角形的四心问题例3:已知,是平面内不共线三点,是的外心,。

15、精准培优专练2020届高三好教育精准培优专练培优点九 线性规划一、求目标函数的最值例1:已知、满足(1)若,求的最值;(2)若,求的最值;(3)若,求的最值【答案】(1),;(2),;(3),【解析】(1)画出可行域如图:画出直线,并平移得在点处最大,在点处最小由,求出为,由,求出为,(2)画出可行域如图:表示可行域内的点到原点的距离的平方,由图可在点处最大,在点处最小,(3)画出可行域如图:,表示可行域内的点与原点连线的斜率,由图可在点处最大,在点处最小由,可得为,二、根据目标函数最值求参数例2:已知,满足,。

16、精准培优专练2020届高三好教育精准培优专练培优点十八 离心率一、椭圆的离心率例1:已知椭圆的长轴长是短轴长的倍,则该椭圆的离心率为( )ABCD【答案】C【解析】,故选C二、双曲线的离心率例2:已知双曲线,则双曲线的离心率为( )ABCD【答案】C【解析】由,得双曲线标准方程为,故本题正确选项C对点增分集训一、选择题1已知焦点在轴上的椭圆的离心率为,则( )A6BC4D2【答案】C【解析】焦点在轴上的椭圆,可得,椭圆的离心率为,可得,解得故选C2已知双曲线,则的离心率为( )ABCD2【答案】C【解析】由双曲线的方程得,又根据,解得。

17、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、公式法例1:已知在数列中,数列是公差为的等差数列,且(1)求数列,的通项公式;(2)求数列的前项和【答案】(1),;(2)【解析】(1),数列是公比为的等比数列,等差数列的公差为,(2)二、裂项相消法例2:已知数列是首项,公比的等比数列,数列满足,数列满足(1)求证:数列为等差数列;(2)求数列的前项和【答案】(1)证明见解析;(2)【解析】(1)证明:由已知得,故数列为等差数列(2),三、错位相减法例3:已知数列的前项和为,且(1)求数列的通项公。

18、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、求切线方程例1:曲线在点处的切线方程为 二、求单调区间和极值例2:已知函数(1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围三、导数与零点例3:已知函数,为的导函数证明:(1)在区间存在唯一极大值点;(2)有且仅有个零点对点增分集训一、选择题1设函数若为奇函数,则曲线在点处的切线方程为( )ABCD2函数的图像大致为( )ABCD3曲线在点处的切线方程为( )ABCD4若函数 (是自然对数的底数)在的定义域上单调递增,则称函数具有性质,下。

19、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、变化率及导数的概念例1:已知,等于( )ABCD【答案】C【解析】,故选C二、导数的几何意义例2:已知直线与曲线相切,则的值为( )ABCD【答案】B【解析】设切点,则,又,故选B三、导数的图象例3:若函数的导函数的图象如图所示,则的图象可能( )ABCD【答案】C【解析】由,可得有两个零点,且,当或时,即函数为减函数;当时,函数为增函数,即当,函数取得极小值,当,函数取得极大值,故选C四、导数的极值例4:已知函数有两个极值点,则的范围为 【答案】【解析】由。

20、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、求切线方程例1:曲线在点处的切线方程为 【答案】【解析】,结合导数的几何意义曲线可知在点处的切线方程的斜率为,切线方程为二、求单调区间和极值例2:已知函数(1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围【答案】(1)见解析;(2)【解析】(1),当时,此时在单调递增;当时,令,解得或;令,解得,此时在,单调递增,在单调递减;当时,令,解得或;令,解得,此时在,单调递增,在单调递减,综上可得,当时,在单调递增当时,在。

【2020届高三精准培优专练五 导数的应用理 教师版】相关DOC文档
2020届高三精准培优专练十三电场的性质(教师版)
2020届高三精准培优专练一神奇的货币 (教师版)
2020届高三精准培优专练十一 数列求通项公式(理) 教师版
2020届高三精准培优专练十六 利用空间向量求夹角(理) 教师版
2020届高三精准培优专练三共点力的平衡(教师版)
2020届高三精准培优专练六 三角函数(理) 教师版
2020届高三精准培优专练一 函数的图象与性质(理) 教师版
2020届高三精准培优专练十七 圆锥曲线的几何性质(理) 教师版
2020届高三精准培优专练五收入与分配 (教师版)
2020届高三精准培优专练十九 圆锥曲线综合(理) 教师版
2020届高三精准培优专练二 函数零点(理) 教师版
2020届高三精准培优专练五 强调句(教师版)
2020届高三精准培优专练二十 几何概型(理) 教师版
2020届高三精准培优专练八 平面向量(理) 教师版
2020届高三精准培优专练九 线性规划(理) 教师版
2020届高三精准培优专练十八 离心率(理) 教师版
2020届高三精准培优专练十二 数列求和(理) 教师版
2020届高三精准培优专练五 导数的应用(理) 学生版
2020届高三精准培优专练五 导数的应用(文) 教师版
2020届高三精准培优专练五 导数的应用(理) 教师版
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开