欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020年高考文科数学解三角形题型归纳与训练

单元训练金卷高三数学卷(A)第 5 单 元 解 三 角 形注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作

2020年高考文科数学解三角形题型归纳与训练Tag内容描述:

1、单元训练金卷高三数学卷(A)第 5 单 元 解 三 角 形注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内 。 写 在 试 题 卷 。

2、专题 04 三角函数与解三角形小题部分【训练目标】1、掌握三角函数的定义,角的推广及三角函数的 符号判断;2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形;3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数;4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式;5、熟记正弦定理,余弦定理及三角形的面积公式;6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。【温馨小提示】此类问题在高考中属于必考题,难度中等,。

3、专题 11 解三角形的技巧与解题规律(2)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。

4、专题 10 解三角形的技巧与解题规律(1)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。

5、1已知 ,sin ,则 tan ( )(2,) 513 ( 4)A B717 177C D717 177【解析】因为 ,所以 cos ,所以 tan ,所以 tan (2,) 1213 512 ( 4)tan tan 41 tan tan 4 ,故选 C. 512 11 512 717【答案】C2ABC 的角 A,B ,C 所对的边分别是 a,b,c,若 cos A ,ca2,b3,则 a( )78A2 B. C3 D.52 72【解析】由余弦定理可知,a 2b 2c 22bccos Aa 29 (a2) 223(a2) a2,故选 A.78【答案】A3已知 ,tan ,那么 sin 2cos 2 的值为( )(4,2) (2 4) 17A B.15 75C D.75 34【答案】A4.在ABC 中,内角 A,。

6、三角函数与解三角形热点问题(专项训练)1.已知函数 f(x)sin x 2 sin23x(1)求 f(x)的最小正周期;(2)求 f(x)在区间 上的最小值 .0,232.(2019济南调研)在ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 asin A4bsin B,ac (a2b 2c 2).5(1)求 cos A 的值;(2)求 sin(2BA)的值.3.已知函数 f(x)sin 2xcos 2x2 sin xcos x(xR ).3(1)求 f(x)的最小正周期;(2)在ABC 中,角 A,B,C 的对边分别为 a,b,c,若 f(A)2,c5,cos B ,求ABC 中线 AD 的长.174.(2018湘中名校联考)已知函数 f(x)cos x(cos x sin x).3(1)求 f(x)的最小值;(2)在ABC 。

7、三角函数与解三角形一、三角函数的图象及其性质已知向量,(1)求的解析式,并求函数的单调增区间;(2)求在上的值域在已知条件下求出,函数的解析式.完成问题:函数的单调增区间.在已知条件下,求在上的值域.【解析】(1)(3分)令,得,故函数的单调增区间为,(6分)(2)因为,所以,从而,(8分)所以,所以在上的值域为(12分)应对策略此类问题通常先通过三角恒等变换化简函数解析式为的形式,再结合正弦函数的性质研究其相关性质(1)已知三角函数解析式求单调区间:求函数的单调区间应遵循简单化原则,将解析式先化简,并注意。

8、2020年高考文科数学三角函数题型归纳与训练【题型归纳】题型一 定义法求三角函数值例1若的终边所在直线经过点,则 【答案】【解析】直线经过二、四象限,又点P在单位圆上,若的终边在第二象限,则,若的终边在第四象限,则,综上可知【易错点】容易忽视对角终边位置进行讨论【思维点拨】定义法求三角函数值的两种情况:(1)已知角终边上一点P的坐标,则可先求出点P到原点的距离r,然后利用三角函数的定义求解(2)已知角的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题。

9、 2020年高考文科数学解三角形题型归纳与训练【题型归纳】题型一 利用正、余弦定理解三角形例1 在中,则A B C D【答案】【解析】因为,所以由余弦定理,得,所以,故选A例2 的内角,的对边分别为,若,则 【答案】【解析】,所以,所以,由正弦定理得:解得例3 的内角,的对边分别为,已知,则( ).A B C D【答案】B【解析】由题意得,即,所以.由正弦定理,得,即,得.故选.【易错点】两角和的正弦公式中间的符号易错【思维点拨】已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数。

【2020年高考文科数学解三角形题型归纳与训练】相关DOC文档
2019年高考数学文科第二伦专题:三角恒等变换与解三角形(仿真押题)
2019年高考数学(含解析)之三角函数与解三角形热点问题(专项训练)
2020年高考数学(理)大题专题解析与训练《三角函数与解三角形》
2020年高考文科数学《三角函数》题型归纳与训练
2020年高考文科数学《解三角形》题型归纳与训练
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开