设全集 UR, Ax|x2x60, Bx|yln (1x) , 则 A (UB) ( ) A1,3) B (1,3 C (1,3) D (2,1 2 (5 分)设(2+i) (3xi)3+(y+5)i(i 为虚数单位) ,其中 x,y 是实数,则|x+yi|等 于( ) A5 B13 C22 D2
2020年云南省高考数学模拟试卷理科4月份含详细解答Tag内容描述:
1、设全集 UR, Ax|x2x60, Bx|yln (1x) , 则 A (UB) ( ) A1,3) B (1,3 C (1,3) D (2,1 2 (5 分)设(2+i) (3xi)3+(y+5)i(i 为虚数单位) ,其中 x,y 是实数,则|x+yi|等 于( ) A5 B13 C22 D2 3 (5 分)函数的部分图象大致为( ) A B C D 4 (5 分)要得到函数的图象,只需将函数 ysin3x+cos3x 的图象( ) A向右平移个单位长度 B向右平移个单位长度 C向左平移个单位长度 D向左平移个单位长度 5 (5 分)等比数列an的前 n 项和为 Sn,公比为 q,若 S69S3,S562,则 a1( ) A B2 C D3 6 (5 分)射线测厚技术原。
2、已知全集为 R,集合,则(RA) B( ) A (0,2) B (1,2 C0,1 D (0,1 2 (5 分)复数满足 z+|z|4+8i,则复数 z 在复平面内所对应的点在( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)已知等差数列an的前 n 项和为 Sn,且 a22,a810,则 S9( ) A45 B42 C25 D36 4 (5 分)函数的图象大致为( ) A B C D 5 (5 分)音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味著名数 学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是 一些形如 asinbx 的简单正弦函数的和, 其中频。
3、已知复数 z(a21)+(a2)i(aR) ,则“a1”是“z 为纯虚数”的( ) A充分非必要条件 B必要非充分条件 C充要条件 D既非充分又非必要条件 2 (5 分)设 z,f(x)x2x+1,则 f(z)( ) Ai Bi C1+i D1+i 3(5 分) 设向量, 若, 则 ( ) A B C1 D3 4 (5 分)黄金三角形有两种,其中底和腰之比为黄金分割比的黄金三角形被认为是最美的 三角形,它是顶角为 36的等腰三角形(另一种是顶角为 108的等腰三角形) ,例如, 正五角星由 5 个黄金三角形和一个正五边形组成, 如图所示, 在一个黄金三角形 ABC 中, ,根据这些信息,可得 sin23。
4、已知集合 Ax|x1 或 x2,B3,2,1,0,1,2,3,则 AB ( ) A3,2 B2,3 C3,2,3 D3,2,2, 3 2 (5 分)若复数 z 满足(1+2i)z5i,则 z( ) A2+i B2i C2+i D2i 3 (5 分)在正项等比数列an中,若 a11,a32a2+3,则其前 3 项的和 S3( ) A3 B9 C13 D24 4 (5 分)已知向量 (1,1) , (2,4) ,则( ) ( ) A14 B4 C4 D14 5 (5 分)已知某几何体的三视图如图所示,则该几何体的体积为( ) A B C2 D4 6 (5 分)执行如图所示的程序框图,则输出的 T( ) 第 2 页(共 24 页) A B C D1 7 (5 分)已知 f(x)是定义在 R 上的减。
5、设集合 Ax|1x2,Bx|ylg(x1),则 A(RB)( ) A1,2) B2,+) C (1,1 D1,+) 2 (5 分)棣莫弗公式(cosx+isinx)ncosnx+isinnx(i 为虚数单位)是由法国数学家棣莫 弗(16671754)发现的,根据棣莫弗公式可知,复数(cos+isin)6在复平面内 所对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)已知点(3,1)和(4,6)在直线 3x2y+a0 的两侧,则实数 a 的取值范围 是( ) Aa7 或 a24 Ba7 或 a24 C24a7 D7a24 4 (5 分)已知 f(x)是(,+)上的减函数,那么实数 a 的取值范围是( ) A (0,1) B0, C, 。
6、已知集合 Ax|2x+13,B|x|lnx1,则 AB( ) A (1,e B (1,1 C (1,0) D (0,e 2 (5 分)若复数 z 满足,其中 i 为虚数单位,则|z|( ) A2 B C D3 3 (5 分)空气质量指数 AQI 是反映空气质量状况的指数,AQI 指数值越小,表明空气质量 越好,其对应关系如表: AQI 指数值 50 (50,100 (100,150 (150,200 (200,300 300 空气质量 优 良 轻度污染 中度污染 重度污染 严重污染 如图是某市 10 月 1 日20 日 AQI 指数变化趋势: 下列叙述正确的是( ) A该市 10 月的前半个月的空气质量越来越好 B这 20 天中的中度污染及以上的天。
7、设集合 A1,3,5,7,Bx|2x5,则 AB( ) A1,3 B3,5 C5,7 D1,7 2 (5 分)设,则|z|( ) A0 B1 C D3 3 (5 分)如图为某地区 2007 年2019 年地方财政预算内收入、城乡居民储蓄年末余额折 线图 根据该折线图,下列结论正确的是( ) A财政预算内收入、城乡居民储蓄年末余额均呈增长趋势 B财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同 C财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量 D城乡居民储蓄年末余额与财政预算内收入的差额逐年增大 4 (5 分)若变量 x,y 满足约束条件,则目标函数 zx2y 的最小。
8、已知集合 Ax|x2+2x30,Bx|2x10,则 AB( ) A B (3,1) C D 2 (5 分)设复数 z 满足 iz1+i,则复数 z 的共轭复数 在复平面内对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)玫瑰花窗(如图)是哥特式建筑的特色之一,镶嵌着彩色玻璃的玫瑰花窗给人以 瑰丽之感构成花窗的图案有三叶形、四叶形、五叶形、六叶形和八叶形等右图是四 个半圆构成的四叶形,半圆的连接点构成正方形 ABCD,在整个图形中随机取一点,此 点取自正方形区域的概率为( ) A B C D 4 (5 分)已知定义在 R 上的奇函数 f(x) ,当 x0 时,f。
9、已知集合 A1,2,B2,3,PAB,则 P 的子集共有( ) A2 个 B4 个 C6 个 D8 个 2 (5 分)i 是虚数单位,复平面内表示 i(1+2i)的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)学校有 3 个文艺类兴趣小组,甲、乙两位同学各自参加其中一个小组,他们参加 各个小组的可能性相同,则这两位同学参加同一个文艺类兴趣小组的概率为( ) A B C D 4 (5 分)数列an中,a12,a23,nN+,an+2an+1an,则 a2020( ) A1 B5 C2 D3 5 (5 分)执行如图的程序框图,如果输出的 y 的值是 1,则输入的 x 的值是( ) A B2 C或 2 D以上。
10、已知集合 Ax|x290,Bx|x1,则 AB( ) A (3,1) B3,1) C3,+) D (1,3 2 (5 分)已知复数 z,则 ( ) Ai Bi C1+i D1i 3 (5 分)在ABC 中,内角 A,B,C 的对边分别为 a,b,c,A,B,c3, 则 a( ) A B2 C3 D4 4 (5 分)已知 alog89,b0.57,clog0.810,则( ) Acab Bbac Cbca Dcba 5 (5 分)学校为了调查学生在课外读物方面的支出(单位:元)情况,抽取了一个容量为 n 的样本,并将得到的数据分成10,20) ,20,30) ,30,40) ,40,50四组,绘制成 如图所示的频率分布直方图,其中支出在40,50的同学有 24 人,则 n( 。
11、已知集合 A0,1,2,3,Bx|x22x30,则 AB( ) A (1,3) B (1,3 C (0,3) D (0,3 2 (5 分)设 z,则 z 的虚部为( ) A1 B1 C2 D2 3 (5 分)某工厂生产的 30 个零件编号为 01,02,19,30,现利用如下随机数表从中 抽取 5 个进行检测若从表中第 1 行第 5 列的数字开始,从左往右依次读取数字,则抽 取的第 5 个零件编号为( ) 34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 86 32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 A25 B23 C12 D07 4 (5 分)记 Sn为等。
12、已知复数 z 满足(1+i)z2i,则|z|( ) A B1 C D 2 (5 分)已知集合 A0,1,2,3,Bx|xn21,nA,PAB,则 P 的子集共 有( ) A2 个 B4 个 C6 个 D8 个 3 (5 分)sin80cos50+cos140sin10( ) A B C D 4 (5 分)已知命题 p:xR,x2x+10;命题 q:xR,x2x3,则下列命题中为真命 题的是( ) Apq Bpq Cpq Dpq 5 (5 分)已知函数 f(x)满足 f(1x)f(1+x) ,当 x1 时,f(x)x,则x|f(x+2) 1( ) Ax|x3 或 x0 Bx|x0 或 x2 Cx|x2 或 x 0 Dx|x2 或 x4 6 (5 分)如图,圆 O 的半径为 1,A,B 是圆上的定点,OBOA,P 是圆上的动点,点。
13、已知集合 Ax|x22x30,Bx|log2x2,则集合 AB( ) Ax|1x4 Bx|0x3 Cx|0x2 Dx|0x1 2 (5 分)设复数 z 满足|z+i|1,z 在复平面内对应的点为(x,y) ,则( ) A (x+1)2+y21 B (x1)2+y21 Cx2+(y+1)21 Dx2+(y1)21 3 (5 分)已知 a,blo,clog2,则( ) Aabc Bbca Ccba Dbac 4 (5 分)已知某样本的容量为 50,平均数为 70,方差为 75现发现在收集这些数据时, 其中的两个数据记录有误,一个错将 80 记录为 60,另一个错将 70 记录为 90在对错误 的数据进行更正后,重新求得样本的平均数为 ,方差为 s2,则( ) A 70,s275 B 70,s2。
14、已知集合 Ax|x1 或 x2,B3,2,1,0,1,2,3,则 AB ( ) A3,2 B2,3 C3,2,3 D3,2,2, 3 2 (5 分)若复数 z 满足(1+2i)z5i,则 z( ) A2+i B2i C2+i D2i 3 (5 分) 在正项等比数列an中, 若 a11, a3a2+2, Sn为其前 n 项的和, 则 ( ) A6 B9 C12 D15 4 (5 分)若夹角为 120的向量 与 满足| + | |2,则| |( ) A1 B2 C D4 5 (5 分)已知某几何体的三视图如图所示,则该几何体的体积为( ) A B C D2 6 (5 分)执行如图所示的程序框图,则输出的 T( ) 第 2 页(共 25 页) A B C D 7 (5 分)已知圆 C: (x1)2+y2r2。
15、已知集合 My|y3x,x0,Nx|ylg(3xx2),则 MN 为( ) A B (1,+) C3,+) D (1,3) 2 (5 分)设 i 是虚数单位,如果复数的实部与虚部是互为相反数,那么实数 a 的值为 ( ) A B C3 D3 3 (5 分)甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试 结果以后,甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用若这三人中仅 有一人说法错误,则下列结论正确的是( ) A丙被录用了 B乙被录用了 C甲被录用了 D无法确定谁被录用了 4 (5 分)设 m,n 是两条不同的直线, 是三个不同的平面,给出下列四个命。
16、已知集合 Ax|2x2,Bx|ln(x)0,则 A(RB)( ) A B (1, C,1) D (1,1 2 (5 分)棣莫弗公式(cosx+isinx)ncosnx+isinnx(i 为虚数单位)是由法国数学家棣莫 弗(16671754)发现的,根据棣莫弗公式可知,复数(cos+isin)6在复平面内 所对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分) 已知点 (3, 1) 和 (4, 6) 在直线 3x2y+a0 的两侧, 则 a 的取值范围是 ( ) A7a24 Ba7 或 a24 Ca7 或 a24 D24a7 4 (5 分)已知 f(x)是(,+)上的减函数,那么实数 a 的取值范围是( ) A (0,1) B0, C, D。
17、已知 i 是虚数单位,复数 z 满足 z(3+4i)1+i,则 z 的共轭复数 在复平面内表 示的点在( ) A第一象限 B第二象限 C第三象限 D第四象限 2 (5 分)若函数 f(x)是幂函数,且满足3,则 f()的值为( ) A3 B C3 D 3 (5 分)已知直线 l1: (m4)x+4y+10 和 l2: (m+4)x+(m+1)y10,若 l1l2, 则实数 m 的值为( ) A1 或3 B或 C2 或6 D或 4 (5 分) “割圆术”是刘徽最突出的数学成就之一,他在九章算术注中提出割圆术, 并作为计算圆的周长、面积以及圆周率的基础刘徽把圆内接正多边形的面积直算到了正 3072 边形, 并由此而求得。
18、已知集合 My|y3x,x0,Nx|ylg(3xx2),则 MN 为( ) A B (1,+) C3,+) D (1,3) 2 (5 分)设 i 是虚数单位,如果复数的实部与虚部是互为相反数,那么实数 a 的值为 ( ) A B C3 D3 3 (5 分)甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试 结果以后,甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用若这三人中仅 有一人说法错误,则下列结论正确的是( ) A丙被录用了 B乙被录用了 C甲被录用了 D无法确定谁被录用了 4 (5 分)设 m,n 是两条不同的直线, 是三个不同的平面,给出下列四个命。
19、已知集合 Sx|x1,Tx|ax2,若 STT,则常数 a 的值为( ) A0 或 2 B0 或 1 C2 D 2 (5 分)已知复数 z1,则 z 在复平面上对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)设向量 (3x,2) , (6,2) ,若 ,则 x( ) A B C2 D2 4 (5 分)为了得到函数 y3sin(2x)的图象,只需把函数 y3sin2x 的图象上所有 的( ) A向左平移个单位长度 B向左平移个单位长度 C向右平移个单位长度 D向右平移个单位长度 5 (5 分)执行如图所示的程序框图若输入的 S0,则输出的 S( ) 第 2 页(共 23 页) A20 B40 C62 D77 6 (5。
20、已知集合 Sx|2x1,Tx|ax1若 STT,则常数 a 的值为( ) A0 或 2 B0 或 C2 D 2 (5 分)已知 i 为虚数单位,若(2+3i)z1+i,则复数 z 在复平面内对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 3 (5 分)为得到函数 y6sin(2x+)的图象,只需要将函数 y6cos2x 的图象( ) A向右平行移动个单位 B向左平行移动个单位 C向右平行移动个单位 D向左平行移动个单位 4 (5 分)某班星期三上午要上五节课,若把语文、数学、物理、历史、外语这五门课安排 在星期三上午,数学必须比历史先上,则不同的排法有( ) A60 种 B30 种 C120。