【总体点评】【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。直角 三角形的有
2020年中考数学必考专题04 二次根式的运算解析版Tag内容描述:
1、【总体点评】【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。直角 三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数学最突出的综合内 容,因此这类问题。
2、【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。以二 次函数与等腰三角形问题为背景的解答题主要考查了学生的数形结合能力及综合分析问题的能力,这类问 题主要是以一点(或以一条线段。
3、【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。二次 函数与相似三角形的存在性问题是中考考试的一个热点。 解决这类问题需要用到数形结合思想, 把“数”与“形” 结合起来,互相渗。
4、【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。二次 函数与特殊平行四边形的综合问题属于初中阶段的主要内容,其主要涉及:二次函数的表达式、二次函数 动点问题的讨论、特殊平行四边。
5、 1如图,在平面直角坐标系 xOy中,抛物线 yx2+bx+c经过 A、B、C三点,已知点 A(3,0) ,B(0, m) ,C(1,0) (1)求 m值; (2)设点 P是直线 AB上方的抛物线上一动点(不与点 A、B重合) 过点 P作 x轴的垂线,垂足为 F,交直线 AB于点 E,作 PDAB于点 D动点 P在什么位置时,PDE 的周长最大,求出此时 P点的坐标; 连接 AP,并以 AP 。
6、【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。构造 二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要 我们能充分运用条件,根据图形。
7、【考查知识点】 以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力; 以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。 【解题思路】 1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法, 为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本 。
8、1如图,抛物线 yx22x+3的图象与 x轴交于 A、B 两点(点 A在点 B的左边) ,与 y轴交于点 C,点 D 为抛物线的顶点 (1)求点 A、B、C 的坐标; (2)点 M(m,0)为线段 AB上一点(点 M不与点 A、B重合) ,过点 M作 x轴的垂线,与直线 AC交于 点 E, 与抛物线交于点P, 过点P作PQAB交抛物线于点Q, 过点Q作QNx轴于点 N, 可得矩形PQNM 如 图,。
9、【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次 函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或 函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。 “圆” 在初中阶段学习占有重要位置,“垂径定理” 、 “点与圆的位置关系”的判定与性质、 “直线与圆的位置关系” 的判定与性质。
10、 【方法综述】【方法综述】 面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下:面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下: 方法一:应用相似三角形性质,面积比等于相似比平方处理面积;方法一:应用相似三角形性质,面积比等于相似比平方处理面积; 方法二:方法二: 同底等高类的三角形面积:同底等高类的三角形面积: 当两个三角形同底(高)等高(底)时,两个三角形的面积相等,同底(高)且高(底)不等的两个当两个三角形同底(高)等高(底)时,两个三角形的面积相等,同底(高。
11、专题09 一元二次方程及其应用专题知识回顾 1定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。2.一元二次方程的一般形式:ax2+bx+c=0(a0)。其中ax2 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。3. 一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。4.一元二次方程的解法有直接开方法、配方法、公式法、因式分解法。(1)直接开方法。适用形式:x2=p、(x+n)2=p或(mx+n)2=p。(2)配方法。套用公式a。
12、专题12 二次函数专题知识回顾 1二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,抛物线的开。
13、第 1 页 / 共 20 页 )(无限不循环小数 负有理数 正有理数 无理数 )( ) 3 2 , 2 1 ( ) 3 2 , 2 1 ( )( )3, 2, 1( )3, 2, 1, 0( 无限循环小数有限小数整数 负分数 正分数 小数分数 负整数 自然数 整数 有理数、 实数 专题专题 04 实数和二次根式的运算实数和二次根式的运算 一、实数一、实数 。
14、 1 专题专题 04 二次根式的运算二次根式的运算 1二次根式:形如式子a(a0)叫做二次根式。 (或是说,表示非负数的算术平方根的式子,叫做二 次根式) 。 2二次根式有意义的条件:被开方数0 3二次根式的性质: (1)是非负数; (2) (a) 2=a (a0) ; (3) aa2 (4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即 = (a0,b0) 。 (5)非负数。
15、第 1 页 / 共 8 页 )(无限不循环小数 负有理数 正有理数 无理数 )( ) 3 2 , 2 1 ( ) 3 2 , 2 1 ( )( )3, 2, 1( )3, 2, 1, 0( 无限循环小数有限小数整数 负分数 正分数 小数分数 负整数 自然数 整数 有理数、 实数 专题专题 04 实数和二次根式的运算实数和二次根式的运算 一、实数一、实数 1。
16、 1 专题专题 04 二次根式的运算二次根式的运算 1二次根式:形如式子a(a0)叫做二次根式。 2二次根式有意义的条件:被开方数 a0 3二次根式的性质: (1)是非负数; (2) (a)2=a (a0) ; (3) aa2 (4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即 = (a0,b0) 。 (5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即。
17、第 1 页 / 共 21 页 )(无限不循环小数 负有理数 正有理数 无理数 )( ) 3 2 , 2 1 ( ) 3 2 , 2 1 ( )( )3, 2, 1( )3, 2, 1, 0( 无限循环小数有限小数整数 负分数 正分数 小数分数 负整数 自然数 整数 有理数、 实数 专题专题 04 实数和二次根式的运算实数和二次根式的运算 一、实数一、实数 。
18、专题04 二次根式的运算专题知识回顾 1二次根式:形如式子(0)叫做二次根式。2二次根式有意义的条件:被开方数a03二次根式的性质:(1)是非负数;(0)(0)0 (=0);(2)()2= (0); (3)(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = (a0,b0)。(5) 非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 = (a0,b0)。反之,4最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。5同类二次根式:二次根式化成最简二次。
19、专题04 二次根式的运算专题知识回顾 1二次根式:形如式子(0)叫做二次根式。(或是说,表示非负数的算术平方根的式子,叫做二次根式)。2二次根式有意义的条件:被开方数03二次根式的性质:(1)是非负数;(0)(0)0 (=0);(2)()2= (0); (3)(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = (a0,b0)。(5) 非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 = (a0,b0)。反之,4最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母。