欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020年中考数学必考专题12 二次函数原卷版

专题06 一元一次方程及其应用 专题知识回顾 知识点1:一元一次方程的概念 1.一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。 要点诠释:一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程 注意

2020年中考数学必考专题12 二次函数原卷版Tag内容描述:

1、专题06 一元一次方程及其应用专题知识回顾 知识点1:一元一次方程的概念1.一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。要点诠释:一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程注意:方程要化为最简形式,且一次项系数不能为零。2.方程的解: 判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所。

2、专题知识回顾 专题10 一元一次不等式(组)及其应用1用不等号“”“”“ ”“”表示不相等关系的式子叫做不等式。2不等式的解:使不等式成立的未知数的值,叫做不等式的解。3不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。4一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。5 一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。6不等式的性质:性质1:不等式的两边都加上(或减。

3、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 07 二次函数背景下的三角形相似(全等)二次函数背景下的三角形相似(全等) 【方法综述】【方法综述】 三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用三角形全等是三角形相似的特殊情况。三角形的全等和相似是综合题中的常见要素,解答时注意应用 全等三角形和相似的判定方法。另外,注意题目中全等三角形和相似的判定方法。另外,注意题目中“”与全等表述、与全等表述、“”和相似表述的区别。全等和和相。

4、专题07 二次函数1(2019衢州)二次函数图象的顶点坐标是ABCD2(2019河南)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为A-2B-4C2D43(2019兰州)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是A2y1y2B2y2y1Cy1y22Dy2y124(2019福建)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是Ay1y2y3By1y3y2Cy3y2y1Dy2y3y15(2019济宁)将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是ABC。

5、专题07 二元一次方程组及其应用专题知识回顾 1二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次。方程一般形式是 ax+by=c(a0,b0)。2二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。3二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。4二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。5消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。(1)代入消元:将一个未知数用含有另一个未。

6、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 08 二次函数背景下的与线段有关的最值探究二次函数背景下的与线段有关的最值探究 【方法综述】【方法综述】 与线段有关的最值探究问题,是中考试卷中的常见问题。解答这些问题常涉及到的知识与线段有关的最值探究问题,是中考试卷中的常见问题。解答这些问题常涉及到的知识 有:两点之间线段最小、垂线段最短、直径是最长的弦等。与之相关的数学模型有:最短路有:两点之间线段最小、垂线段最短、直径是最长的弦等。与之相关的数学模型有:最短路 径问题、。

7、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】圆和二次函数都是初中数学重点知识,是圆和二次函数都是初中数学重点知识,是 压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景 的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内的问题中,圆的知识常。

8、专题04 二次根式的运算专题知识回顾 1二次根式:形如式子(0)叫做二次根式。(或是说,表示非负数的算术平方根的式子,叫做二次根式)。2二次根式有意义的条件:被开方数03二次根式的性质:(1)是非负数;(0)(0)0 (=0);(2)()2= (0); (3)(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = (a0,b0)。(5) 非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 = (a0,b0)。反之,4最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母。

9、 备战备战 20192019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 09 09 二次函数背景下的动点问题探究二次函数背景下的动点问题探究 【方法综述】【方法综述】动点是常见的综合问题中的构成要件,通过点的运动命动点是常见的综合问题中的构成要件,通过点的运动命 题者可以构造各种问题情景。动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无题者可以构造各种问题情景。动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无 速度动点和有速度动点,从动点的引起的变化分为单个动。

10、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 04 二次函数背景下的图形面积的探究二次函数背景下的图形面积的探究 【方法综述】【方法综述】 面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下:面积问题中,以三角形的面积的情况居多,通常三角形的面积探究方法如下: 方法一:应用相似三角形性质,面积比等于相似比平方处理面积;方法一:应用相似三角形性质,面积比等于相似比平方处理面积; 方法二:方法二: 同底等高类的三角形面积:同底等高类的三角形面积: 当两个三角形同。

11、 备战 2019 年中考数学压轴题之二次函数 专题专题 03 二次函数背景下的图形变换二次函数背景下的图形变换 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图。

12、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。

13、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 02 二次函数与营销问题二次函数与营销问题 【方法综述】【方法综述】来源来源:学学.科科.网网 Z.X.X.K 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等。

14、专题09 一元二次方程及其应用专题知识回顾 1定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。2.一元二次方程的一般形式:ax2+bx+c=0(a0)。其中ax2 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。3. 一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。4.一元二次方程的解法有直接开方法、配方法、公式法、因式分解法。(1)直接开方法。适用形式:x2=p、(x+n)2=p或(mx+n)2=p。(2)配方法。套用公式a。

15、专题13 反比例函数专题知识回顾 1反比例函数:形如y(k为常数,k0)的函数称为反比例函数。其他形式xy=k、 。 2图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点。它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3性质:(1)当k0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; (2)当k0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何。

16、专题14 函数的综合问题专题知识回顾 1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析 【例题1】(2019黑龙江绥化)一次函数y1x+6与反比例函数y2(x0)的图象如图所示.当y1y2时,自变量x的取值范围是_.第18题图【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则的值为 【例题3】(2019广西省。

17、专题11 一次函数专题知识回顾 1一次函数的定义一般地,形如(,是常数,且)的函数,叫做一次函数,其中x是自变量。2一次函数的图像:是不经过原点的一条直线。3一次函数的性质:(1)当k0时,图象主要经过第一、三象限;此时,y随x的增大而增大;(2)当k0时,直线交y轴于正半轴;(4)当b0时,直线交y轴于负半轴。4. 用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值。

18、专题04 二次根式的运算专题知识回顾 1二次根式:形如式子(0)叫做二次根式。2二次根式有意义的条件:被开方数a03二次根式的性质:(1)是非负数;(0)(0)0 (=0);(2)()2= (0); (3)(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = (a0,b0)。(5) 非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 = (a0,b0)。反之,4最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。5同类二次根式:二次根式化成最简二次。

19、专题12 二次函数专题知识回顾 1二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,抛物线的开。

20、专题12 二次函数专题知识回顾 1二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,抛物线的开口向。

【2020年中考数学必考专题12 二次函数原卷版】相关DOC文档
2020年中考数学必考专题06 一元一次方程及其应用(原卷版)
2020年中考数学必考专题10 一元一次不等式(组)及其应用(原卷版)
2020年中考数学必考专题07 二元一次方程组及其应用(原卷版)
2020年中考数学必考专题04 二次根式的运算(解析版)
2020年中考数学必考专题09 一元二次方程及其应用(原卷版)
2020年中考数学必考专题13 反比例函数(原卷版)
2020年中考数学必考专题14 函数综合题(原卷版)
2020年中考数学必考专题11 一次函数(原卷版)
2020年中考数学必考专题04 二次根式的运算(原卷版)
2020年中考数学必考专题12 二次函数(解析版)
2020年中考数学必考专题12 二次函数(原卷版)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开