欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020年中考数学专题复习二次函数与图形综合培优

2021 年中考复习二次函数压轴题分类训练年中考复习二次函数压轴题分类训练 9:与圆相关的综合题:与圆相关的综合题 1我们把方程(xm)2+(yn)2r2称为圆心为(m,n) 、半径长为 r 的圆的标准方程例如,圆心为 (1,2) 、半径长为 3 的圆的标准方程是(x1)2+(y+2)29在平面直角

2020年中考数学专题复习二次函数与图形综合培优Tag内容描述:

1、2021 年中考复习二次函数压轴题分类训练年中考复习二次函数压轴题分类训练 9:与圆相关的综合题:与圆相关的综合题 1我们把方程(xm)2+(yn)2r2称为圆心为(m,n) 、半径长为 r 的圆的标准方程例如,圆心为 (1,2) 、半径长为 3 的圆的标准方程是(x1)2+(y+2)29在平面直角坐标系中,C 与 x 轴 交于点 A,B,且点 B 的坐标为(8,0) ,与 y 轴相切于点 D(0。

2、专题四二次函数综合题类型一 线段、周长问题 (5年2考)(2019改编题)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1)如图,直线yx与抛物线交于A,B两点,直线l为y1.(1)求抛物线的表达式;(2)在y轴上是否存在一点M,使点M到点A,B的距离相等?若存在,求出点M的坐标;若不存在,请说明理由;(3)在l上是否存在一点P,使PAPB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由;(4)设点S是直线l的一点,是否存在点S,使得SBSA最大,若存在,求出点S的坐标【分析】(1)设顶点式ya(x2)2,将点(4,1)代入即可求a的值。

3、 1 第三章 函 数第六节 二次函数的综合应用类型 1 特殊三角形问题1. 如图,已知抛物线 C:yx 2bxc 经过 A(3,0)和 B(0,3) 两点,将这条抛物线的顶点记为 P,它的对称轴与 x 轴的交点记为 Q.(1)求抛物线 C 的表达式;(2)求点 P 的坐标;(3)将抛物线 C 沿 x 轴向右平移 d(d0)个单位,得到抛物线 C,抛物线 C与抛物线 C 交于点 M,如果以点 P、 Q、 M 为顶点的三角形是直角三角形,求抛物线 C的表达式第 1 题图2. 在平面直角坐标系 xOy 中,已知点 A 在 x 轴正半轴上,OA4,将线段 OA 绕点 O 顺时针旋转 120至OB 的位置(1)求点 B 的坐标;(2。

4、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】圆和二次函数都是初中数学重点知识,是圆和二次函数都是初中数学重点知识,是 压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景 的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内的问题中,圆的知识常。

5、二次函数综合练习题二次函数综合练习题 1 在平面直角坐标系 xOy 中,若点 P 的横坐标和纵坐标相等,则称点 P 为完美点已知二次函数 y ax2+4x+c(a0)的图象上有且只有一个完美点(,),且当 0 xm 时,函数 yax2+4x+c(a0)的 最小值为3,最大值为 1,则 m 的取值范围是( ) A1m0 B2m C2m4 Dm 【解答】C 【解析】令 ax2+4x+cx,即 ax2+。

6、备战备战 2021 年中考复习重难点与压轴题型专项训练年中考复习重难点与压轴题型专项训练 专题 13 二次函数中的图形运动最值问题 【专题训练】 一、解答题一、解答题 1(2020 浙江绍兴市 九年级其他模拟)已知:如图,ABC 是等腰直角三角形, 90 ,3cmAABAC ,动点 P, Q 同时从 A,B 两点出发,分别沿 AB,AB 方向匀速移动,P 的速度是1cm/s,Q 的速度是 2cm/。

7、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】 圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合 则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与 圆有关的位置关系、构。

8、 1 一、考点分析:一、考点分析:二次函数的综合题中在第二三小问比较常考到相似三角形的问题,这类题 目出现在压轴题目中的概率比较高,难度系数也是偏大的,对于学生的计算和综合知识掌握要 求比较高。我们要利用我们现学的相似的知识在平面直角坐标系中研究。 二、解决此类题目的基本步骤与思路二、解决此类题目的基本步骤与思路 1.抓住相似的两个目标三角形,找出已知条件(例如已知边、已知角度、已知点坐标等) 2.找现成的等量关系,例如相等的角度从而确定下来对应关系 3. 运用分类讨论思想,几种不同相似的可能性逐一讨论 4. 充分。

9、2019年中考山东省各地市 “二次函数综合题”专题汇编与解析一解答题(共14小题)1(2019聊城)如图,在平面直角坐标系中,抛物线yax2+bx+c与x轴交于点A(2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得PEA和AOC相似的点P的坐标;(3)作PFBC,垂足为F,当直线l运动时,求RtPFD面积的最大值2(2019菏泽)如图,抛物线与x轴交于A,B两点,与。

10、专题五二次函数综合题 类型一 线段、周长问题 (5年1考)(2019临邑二模)如图,抛物线yax2bx与x轴交于A(1,0),B(6,0)两点,D是y轴上一点,连接DA并延长,交抛物线于点E.(1)求此抛物线的解析式;(2)若点E在第一象限,过点E作EFx轴于点F,ADO与AEF的面积比为,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M,N两点,是否存在点D,使DA2DMDN?若存在,请求出点D的坐标;若不存在,请说明理由【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的性质与判定,可得AF的长,根据自变量与函数值的对应关系。

11、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 02 二次函数与营销问题二次函数与营销问题 【方法综述】【方法综述】来源来源:学学.科科.网网 Z.X.X.K 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等。

12、 【方法综述】【方法综述】 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到。

13、 备战 2019 年中考数学压轴题之二次函数 专题专题 03 二次函数背景下的图形变换二次函数背景下的图形变换 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图。

14、中考一轮数学复习中考一轮数学复习 二次函数最值的综合应用二次函数最值的综合应用 培优提升专题训练培优提升专题训练 1当 m 在可取值范围内取不同的值时,代数式的最小值是( ) A0 B5 C3 D9 2二次函数 ymx24x+m 有最小值3,则 m 等于( ) A1 B4 C1 或4 D1 或 4 3若一次函数 y(a+1)x+a 的图象过第一、三、四象限,则二次函数 yax2ax( ) A有最大。

15、 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图象的图形变换,此类问题在解决二次函数图象平移时可以采用顶点式一个是二次函数图象的图形变换,此类问题。

16、专题五二次函数综合题类型一 与一次函数图象的交点问题(2019三明质检)已知抛物线C:y1a(xh)22,直线l:y2kxkh2(k0)(1)求证:直线l恒过抛物线C的顶点;(2)若a0,h1,当txt3时,二次函数y1a(xh)22的最小值为2,求t的取值范围;(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1k3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围【分析】(1)将抛物线顶点坐标代入直线l的解析式中即可求证;(2)由二次函数最小值为2可知,th1t3,解不等式即可得解;(3)使y1y2得点Q的横坐标为h,分类讨论a0和a0的两种情况即可。

17、二次函数图象综合应用知识互联网题型一:二次函数图象与其解析式系数的关系思路导航图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面若二次函数解析式为(或)(),则:开口方向,越大,开口越小对称轴(或)顶点坐标,或,单调性当时,在对称轴的左侧,随的增大而减小;在对称轴的右侧,随的增大而增大(如图1);当时,在对称轴的左侧,随的增大而增大;在对称轴的右侧,随的增大而减小(如图2)与坐标轴的交点 与轴的交点:; 与轴的交点:,其中是方程的两根图象与轴的交点个数 当时。

18、函数与几何综合1如图,抛物线C1:yx22x与抛物线C2:yax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA2OB(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,MOC面积最大?并求出最大面积2如图,抛物线yx2+bx+c与直线yx+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC已知A(0,3),C(3,0)(1)求抛物线的解析式;(2。

19、图形中的二次函数解析式与复杂图象变换知识互联网题型一:二次函数的解析式思路导航二次函数的三种解析式示例剖析一般式顶点式或交点式其中是方程的两个实根例题精讲【引例】 如图,抛物线与轴交于、两点,交轴于点,若,则抛物线的解析式为 . 【解析】 当时,与轴交于,点的坐标为,点的坐标为把点和代入得解得,抛物线的解析式为.典题精练【例1】 根据给定条件求出下列二次函数解析式 抛物线,当1x5时,y值为正;当x1或x5时,y值为负; 抛物线与轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M; 如图,在平面直角坐标系xO。

20、二次函数与图形综合知识互联网题型一:坐标系中(函数图象上)动点产生三角形问题思路导航坐标系中(函数图象上)动点产生三角形的问题我们主要讲解3类:因动点产生的等腰三角形问题因动点产生的直角三角形问题因动点产生的相似三角形问题.一、方法与技巧:已知线段和直线,在直线上找点,使为等腰三角形几何法:分别以点、为圆心,为半径作圆,找点,(检验)作线段的垂直平分线,找点(检验)代数法:设点的坐标为,求出、的长度,分类讨论:;求出点(检验)二、方法与技巧:已知线段和直线,在直线上找点,使为直角三角形几何法:分别。

【2020年中考数学专题复习二次函数与图形综合培优】相关DOC文档
山东省枣庄市2020年中考数学第二轮复习专题类型突破四:二次函数综合题
专题25 二次函数综合练习题-2021年中考数学几何专项复习(教师版含解析)
2019年中考山东省各地市数学专题汇编与解析:二次函数综合题
山东省德州市2020年中考数学大二轮复习专题五:二次函数综合题
福建省2020年中考数学复习专题五:二次函数综合题
2020年中考数学专题复习:二次函数图象综合应用
2019年中考数学第二轮专题《二次函数与几何图形》综合复习试卷含解析
2020年中考数学专题复习:图形中的二次函数解析式与复杂图象变换
2020年中考数学专题复习二次函数与图形综合培优
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开