欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

2020中考数学专题复习针对训练

图形的动点问题 知识互联网 题型一:点运动产生函数 思路导航 我们初二已经学过了三角形、四边形上动点产生的函数问题,初三已学习了新的图形圆,出现了一些以圆为背景,因点的运动产生的函数问题,这些问题的重点在于定性刻画两个变量之间的关系. 典题精练 【例1】 如图,是的直径,为圆上一点点从点出发,沿运动

2020中考数学专题复习针对训练Tag内容描述:

1、图形的动点问题知识互联网题型一:点运动产生函数思路导航我们初二已经学过了三角形、四边形上动点产生的函数问题,初三已学习了新的图形圆,出现了一些以圆为背景,因点的运动产生的函数问题,这些问题的重点在于定性刻画两个变量之间的关系. 典题精练【例1】 如图,是的直径,为圆上一点点从点出发,沿运动到点,然后从点沿运动到点假如点在整个运动过程中保持匀速,则下面各图中,能反映点与点的距离随时间变化的图象大致是( )A B C D 如图,点、为圆的四等分点,动点从圆心出发,沿线段线段的路线作匀速运动设运动时间为秒,的度数。

2、2019年中考数学最后一轮复习(压轴训练):圆的专题1.某校科技实践社团制作实践设备,小明的操作过程如下:小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB4分米;将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);用一细橡胶棒连接C、D两点(如图3);计算出橡胶棒CD的长度小明计算橡胶棒CD的长度为()A2分米B2分米C3分米D3分米解:连接OC,作OECD,如图3,AB4分米,OC2分米,将圆环进行翻折使点B落在圆心。

3、 三大几何变换知识互联网题型一:平移变换思路导航平移一般是在需要同时移动两条线段或元素的时候,才考虑的方法典题精练【例1】 已知:如图,正方形中,是上一点,于点 求证: 求证:【解析】 延长到点,使得,连接、 ,四边形为平行四边形,又,在和中 由知道为等腰直角三角形在中,当时,取到等号【例2】 在RtABC中,A=90,D、E分别为AB、AC上的点 如图1,CE=AB,BD=AE,过点C作CFEB,且CF=EB,连接DF交EB于点G,连接BF,请你直接写出的值; 如图2,CE=kAB,BD=kAE,求k的值图2图1【解析】(1). (2)过点C作CFEB且CF=EB,连接DF交EB于点。

4、2018 初三数学中考复习 图形的平移、旋转与对称 专题复习训练题1(2015贺州)下面的图形中,既是轴对称图形又是中心对称图形的是( C )2如图,在平面直角坐标系中,将点 M(2,1)向下平移 2个单位长度得到点N,则点 N的坐标为( A )A(2,1) B(2,3) C(0,1) D(4,1)3把一张正方形纸片如图、图对折两次后,再按如图挖去一个三角形小孔,则展开后图形是( C )A. B. C. D.4在平面直角坐标系中,将AOB 绕原点 O顺时针旋转 180后得到A 1OB1,若点 B的坐标为(2,1),则点 B的对应点 B1的坐标为( D )A(1,2) B(2,1) C(2,1) D(2,1)5如图,线段 AB经过。

5、重难专题解读,第二部分,专题五 圆的综合题,1,圆的综合题是圆与三角形、四边形等图形综合在一起,常考题型有:与圆的性质有关的证明或计算;与切线有关的证明与计算涉及证明线段相等或平行,角相等,判断线段间的位置关系,线段的长度或角的度数的计算,切线的证明,扇形弧长及阴影面积的计算,等等,考情分析,2,1证明圆的切线时,可以分以下两种情况 (1)若直线过圆上某一点,证明直线是圆的切线时,只需连接过这点的半径,证明这条半径与直线垂直即可,可简述为:“有切点,连半径,证垂直”“证垂直”时通常利用圆中的关系得到90的角; (2。

6、重难专题解读,第二部分,专题四 动态几何问题,1,动态几何问题是指题设图形中存在一个或多个动点、动线等在线段、弧线上运动的一类开放性题目动态几何问题有两个显著的特点:一是“动态”,常以图形或图象中点、线的运动(包括图形的平移、旋转、折叠、相似等图形变换)为重要的构图背景;二是“综合”,主要体现为三角形、四边形等几何知识与函数、方程等代数知识的综合解决此类问题的关键是在认真审题的基础上先做到“静中求动”,根据题意画一些不同运动时刻的图形,对整个运动过程有一个初步的理解,理清运动过程中的各种情形;然后“动中。

7、重难专题解读,第二部分,专题一 数学思想方法,1,数学思想方法是指对数学知识和方法形成的规律性认识,是解决数学问题的根本策略,是沟通基础知识与能力的桥梁中考常用到的数学思想方法有整体思想、转化(化归)思想、分类讨论思想、数形结合思想等,考情分析,2,题型一 整体思想,【方法解读】整体思想就是整体与局部的对应,按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决整体思想常用于求代数式的值,解方程(组)及不等式(组),求角度等,常考题型 精讲,3,例 1,典例精析,D,4。

8、中考专题训练 动点问题例1. 如图, 在中,于点, 点从点出发, 在线段上以每秒的速度向点匀速运动, 与此同时, 垂直于的直线从底边出发, 以每秒的速度沿方向匀速平移, 分别交、于、,当点到达点时, 点与直线同时停止运动, 设运动时间为秒(1) 当时, 连接、,求证: 四边形为菱形;(2) 在整个运动过程中, 所形成的的面积存在最大值, 当的面积最大时, 求线段的长;(3) 是否存在某一时刻,使为直角三角形?若存在, 请求出此时刻的值;若不存在, 请说明理由 【解答】(1) 证明: 当时,则为的中点, 如答图 1 所示 又,为的。

9、第二部分专题六1(2019杭州)设二次函数y(xx1)(xx2)(x1,x2是实数)(1)甲求得当x0时,y0;当x1时,y0;乙求得当x时,y.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示)(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0x1x21时,求证:0mn.(1)解:乙求得的结果不正确理由如下:当x0时,y0;当x1时,y0,二次函数的图象经过点(0,0),(1,0),x10,x21,yx(x1)x2x,当x时,y,乙求得的结果不正确(2)解:对称轴为直线x,当x时,二次函数的最小。

10、第二部分专题五题型二1(2019漳州质检)如图,AB是O的直径,AC为O的弦,ODAB,OD与AC的延长线交于点D,点E在OD上,且ECDB.(1)求证:EC是O的切线;(2)若OA3,AC2,求线段CD的长第1题图(1)证明:如答图,连接OC.第1题答图AB是O的直径,ACOBCO90.OBOC,BBCO,ACOB90.ECDB,ECDACO90,即OCE90,CE是O的切线(2)解:OA3,AC2,BCA90,AB6,cosA.又ODAB,cosA,AD9,CDADAC7.2如图,A,B,C是O上的点,BD为O的切线,连接AC并延长交BD于点D,连接AB,BC,过点C作CEBD于点E,且CBE45.(1)求证:CE是O的切线;(2)若O的半径为1,求阴影部分的面积。

11、第二部分专题五题型一1(2019莆田质检)如图,在O中,弦ACBD于点E,连接AB,CD,BC.(1)求证:AOBCOD180;(2)若AB8,CD6,求O的直径第1题图(1)证明:ACBD,BEC90,CBDBCA90.AOB2BCA,COD2CBD,AOBCOD2(BCACBD)180.(2)解:如答图,延长BO交O于点F,连接AF,第1题答图则AOBAOF180.由(1)得AOBCOD180,AOFCOD,AFCD6.BF为O的直径,BAF90,在RtABF中,BF10,O的直径为10.2如图,在ABC中,ABAC,以AB为直径的O分别交BC,AC于点D,E,连接BE交OD于点F.第2题图(1)求证:ODBE;(2)连接DE,若DE2,AB5,求A。

12、第二部分专题一题型二1一元二次方程x22x30的解是x11,x23.现给出另一个方程(2x3)22(2x3)30,它的解是(D)Ax11,x23Bx11,x23Cx11,x23Dx11,x232如图,点E在正方形ABCD的对角线AC上,且EC2AE,RtFEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(D)第2题图Aa2Ba2Ca2Da23已知ab0,且0,则_.第4题图4如图是一个三级台阶,它的每一级的长、宽、高分别为55,10和6,A和B是这个台阶的两个相对端点,A点有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线是_73_.5已知ABC的三边长分别为a,b,c,。

13、第二部分专题一题型三1(2019厦门一中模拟)在等腰三角形ABC中,A80,则B的度数为_20或50或80_.2(2019菏泽)如图,直线yx3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,1个单位长度为半径作P.当P与直线AB相切时,点P的坐标是_(,0)或(,0)_.第2题图3(2019绍兴)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连接ED,则ADE的度数为_15或45_.第3题图4(2019凉山)在ABCD中,E是AD上一点,且点E将AD分为23的两部分,连接BE,与AC相交。

14、第二部分专题一题型一1(2019天水)已知ab,则代数式2a2b3的值是(B)A2B2C4D32已知(xy2)20,则x2y2_4_.3如图,在ABC中,A40,D是ABC和ACB平分线的交点,则BDC_110_.第3题图4如图,A,B,C两两不相交,且半径都是1,则图中三个扇形(即阴影部分)的面积之和为_.第4题图5已知方程a(2xa)x(1x)的两个实数根为x1,x2,设S.(1)当a2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由解:(1)当a2时,原方程化为x25x40,解得x14,x21,S213.(2)S,S2x1x22,a(2xa)x(1x)。

15、第二部分专题一题型四1已知一次函数ykxb的图象与正比例函数y2x的图象相交于点B(m,2),则关于x的不等式kxb2x的解集为(B)第1题图Ax12在平面直角坐标系中,A(2,0),以点A为圆心,1为半径作A.若P(x,y)是A上任意一点,则的最大值为(D)A1BCD3(2019甘肃)如图是二次函数yax2bxc的图象,对于下列说法:ac0,2ab0,4acb2,abc0,当x0时,y随x的增大而减小,其中正确的是(C)ABCD第3题图4在RtABC中,BAC90,AB3,AC4,P为边BC上一动点,PEAB于点E,PFAC于点F.若M为EF的中点,则AM的最小值为_.第4题图5(2019重庆B卷)一天,小明从家出发匀速步行去学校。

16、第二部分专题四题型二1如图,矩形ABCD的对角线AC,BD相交于点O,将线段AC绕点A逆时针旋转一定角度到AE,连接CE,F为CE的中点,连接OF.(1)求证:OFOB;(2)若OFBD,且AC平分BAE,求BAE的度数第1题图(1)证明:四边形ABCD是矩形,ACBD,OBODBD,OAOCAC,OBAC.又OAOCAC,F为CE的中点,OFAE.由旋转的性质可知AEAC,OBOF.(2)解:如答图AC平分BAE,12,第1题答图设12x.OAOCAC,F为CE的中点,OFAE,31x.ACBD,OBODBD,OAOCAC,OAOB,52x,42x.OFBD,BOF90,即3490,x2x90.x30,BAE2x60&。

17、第二部分专题二1小明对A,B,C,D四个中小型超市的女员工人数进行了统计,并绘制了下面的统计图表,已知A超市有女员工20人四个超市女员工人数统计图第1题图超市ABCD女员工人数占比62.5%62.5%50%75%(1)A超市共有员工多少人?B超市女员工有多少人?(2)若从这些女员工中随机选出一个,求正好是C超市女员工的概率;(3)现在D超市又招进男、女员工各1人,D超市女员工占比还是75%吗?甲同学认为是,乙同学认为不是,你认为谁说得对?并说明理由解:(1)A超市共有员工2062.5%32(人)3608010012060,四个中小型超市的女员工人数比为80100120604563,B。

18、第二部分专题四题型一1(2019三明质检)如图,在ABC中,点P是BC边上的动点,点M是AP的中点,PDAB,垂足为D,PEAC,垂足为E,连接MD,ME.第1题图(1)求证:DME2BAC;(2)若B45,C75,AB6,连接DE,求MDE周长的最小值(1)证明:证法一:如答图1,PDAB,PEAC,M为AP的中点,DMEMAPAM,12,34,51221,63423,DME5621232BAC.证法二:PDAB,PEAC,M为AP的中点,DMEMAPAMPM,点A,D,P,E在以M为圆心,MA为半径的圆上,DME2BAC.第1题答图(2)解:如答图2,过点M作MNDE于点N.由(1)知DMEMAP,DMNEMNDME,DNEN.B45,C75,BAC60°。

19、第二部分专题四题型三1如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处第1题图(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC的中点,BC26,tanB,求EF的长(1)证明:如答图1.平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12.四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE.AFCE,四边形AECF为平行四边形AEAF,四边形AECF为菱形第1题答图(2)解:如答图2,连接CF,过点E作EHAB于点H.E为BC的中点,BC26,BEEC13.四边形AECF为菱形,AEAFCE13,AFBE,四边形ABEF为平行四边形,EFAB.EAEB,EHAB,A。

20、第二部分专题三1在平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为(m,n)已知(x1,y1),(x2,y2),若x1x2y1y20,则与互相垂直下面四组向量:(3,9),(1,);(2,0),(21,1);(cos30,tan45),(sin30,tan45);(2,),(2,)其中互相垂直的有(A)A1组B2组 C3组 D4组2阅读理解:a,b,c,d是实数,我们把符号称为22阶行列式,并且规定:adbc.例如:3(2)2(1)624,二元一次方程组的解可以利用22阶行列式表示为其中D,Dx,Dy.问题:用上面的方法解二元一次方程组时,下面说法错误的是(C)AD7BDx14CDy27D方程组的解为3阅读理解。

【2020中考数学专题复习针对训练】相关PPT文档
专题5 圆的综合题 2020中考数学专题复习(课件)
专题4 动态几何问题 2020中考数学专题复习(课件)
专题1 数学思想方法 2020中考数学专题复习(课件)
【2020中考数学专题复习针对训练】相关DOC文档
2020年中考数学专题复习图形中的动点问题培优
2019年中考数学最后一轮复习(压轴训练):圆的专题(附解析)
2020年中考数学专题复习:三大几何变换
2018年中考数学总复习《图形的平移、旋转与对称》专题复习训练题及答案
2020中考数学-动点问题专题训练(含答案)
专题6 二次函数纯代数问题 2020中考数学专题复习(针对训练)
专题5 圆的综合题 2020中考数学专题复习(针对训练) 题型2
专题5 圆的综合题 2020中考数学专题复习(针对训练) 题型1
专题1 题型2 数学思想方法 2020中考数学专题复习针对训练)
专题1 题型3 数学思想方法 2020中考数学专题复习(针对训练)
专题1 题型1 数学思想方法 2020中考数学专题复习(针对训练)
专题1 题型4 数学思想方法 2020中考数学专题复习(针对训练)
专题4 动态几何问题 2020中考数学专题复习(针对训练)题型2
专题2 统计与概率的综合 2020中考数学专题复习(针对训练)
专题4 动态几何问题 2020中考数学专题复习(针对训练)题型1
专题4 动态几何问题 2020中考数学专题复习(针对训练) 题型3
专题3 “新定义”型问题 2020中考数学专题复习(针对训练)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开