例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 3 2 ,点A,B, 2 F分别为椭圆的右顶点,上顶点和右焦点, 且 2 3 1 2 ABF S (1)求椭圆C的方程; (2)E,F是椭圆上的两个动点,若直线AE与直线AF的斜率之和为1,证明,直线EF恒过定点 例 2:已
2021届高三数学精准培优专练 函数零点理 含答案Tag内容描述:
1、 例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 3 2 ,点A,B, 2 F分别为椭圆的右顶点,上顶点和右焦点, 且 2 3 1 2 ABF S (1)求椭圆C的方程; (2)E,F是椭圆上的两个动点,若直线AE与直线AF的斜率之和为1,证明,直线EF恒过定点 例 2:已知双曲线 2 2 :1(0) y C xb b 的左、右焦点分别为 1 F, 2 F,。
2、 例 1:若实数x,y满足约束条件 230 230 0 xy xy xy ,则23xy的取值范围是( ) A 1,15 B1,15 C 1,16 D1,16 例 2:设x,y满足约束条件 33 1 0 xy xy y ,则 y z x 的最大值为 例 3:已知实数x,y满足 10 220 220 xy xy xy ,若目标函数(0)zaxy a最大值为5,取到最。
3、 例 1:设函数( )3xg x ,( )9xh x (1)解方程 33 ()log 2 ( )8l(og9( )xg xh x; (2)若 (1) ( ) ( ) g xa f x g xb 是R上的奇函数,且( ( )( )120f h xfk g x对任意 实数x恒成立,求实数k的取值范围 例 2:已知函数 1ln x f x x ,如果当1x 时,。
4、 例 1:如图,已知OAB,若点C满足 2ACCB ,,OCOAOB R, 则 11 ( ) A 1 3 B 2 3 C 2 9 D 9 2 例 2:如图,在ABC中,ADDB,F在线段CD上,设AB a,AC b, AFxyab,则 14 xy 的最小值为_ 例 3:已知| 1OA ,| | 2OB uu u r ,|3OAOB,则向量OA,OB的夹角为( ) A。
5、 例 1:设椭圆 22 22 :1(0) xy Cab ab 的两个焦点分别为 1 F, 2 F,若在x轴上方的C上 存在两个不同的点M,N满足 1212 2 3 FMFFNF ,则椭圆C离心率的取值范围是 ( ) A 3 (0, 2 B 1 (,1) 2 C 3 (,1) 2 D 23 (,) 22 例 2: 阿基米德 (公元前287年公元前212年) 不仅是著名的物理学家, 也是著名。
6、 例 1: 数列 n a中, 1 2a , m nmn aa a , 若 1 55 121 0 22 kkk aaa , 则k ( ) A2 B3 C4 D5 例 2:已知数列 n a, n b, n c满足 111 1abc, 1nnn caa , 1 2 n nn n b cc b , * ()nN (1)若数列 n b为等比数列,公比0q ,且 123 6bbb,求q的值及数列 。
7、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD【答案】B【解析】由题意可知原函数是上的增函数,故根据零点存在定理得到零点存在于上,故选B二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD【答案】B【解析】函数是上的偶函数,可得,又,可得,故可得,即,即函数的周期是,又时,要研究方程在区间上解的个数,可将问题转化为与在区间有几个交点画出两函数图象如下,由图知两函数图象有个交点。
8、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD三、求函数零点例3:已知定义在上的奇函数满足,当时,则函数在区间上所有零点之和( )ABCD四、根据函数零点情况求参数的取值范围例4:函数,方程有个不相等实根,则的取值范围是( )ABCD五、二分法例5:在用二分法求函数在区间上的唯一零点的过程中,取区间上的中点,若,则函数在区间上的唯一零。
9、 例 1: 已知函数1 x yaa与log1 a yx a的图象有且仅有两个公共点, 则实数a的 取值范围是( ) A 1 1 e ae B1ae C 1 e eae Dae 例 2:若对任意0,1m,总存在唯一 1,1x 使得 2 0 x mx ea 成立,则实数a的取 值范围是( ) A1, e B 1 (1, e e C(0, e D 1 1, e e 一、选择题 1已知函数。
10、 例 1:函数( )2 x f xex的零点所在的一个区间是( ) A( 2, 1) B( 1,0) C(0,1) D(1,2) 例 2:函数 2 2,0 26lg ,0 xx f x xx x 的零点的个数为( ) A0 B1 C2 D3 例 3: 已知函数1 x yaa与log1 a yx a的图象有且仅有两个公共点, 则实数a的 取值范围是( ) A 1 1 e ae B1。