教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程的解法公式法及根的判别式 待提升的知 识点题型 1、掌握一元二次方程的解法公式法,熟练运用求根公式解一元二次方程
21.2.2公式法教案Tag内容描述:
1、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程的解法公式法及根的判别式 待提升的知 识点/题型 1、掌握一元二次方程的解法公式法,熟练运用求根公式解一元二次方程; 2、掌握一元二次方程根的判别式; 3、通过根的情况反向判定判别式与 0 的关系; (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知。
2、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程的解法公式法及根的判别式 待提升的知 识点/题型 1、掌握一元二次方程的解法公式法,熟练运用求根公式解一元二次方程; 2、掌握一元二次方程根的判别式; 3、通过根的情况反向判定判别式与 0 的关系; (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知。
3、21.2 解一元二次方程,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,21.2.2 公式法,学习目标,1.经历求根公式的推导过程.(难点) 2.会用公式法解简单系数的一元二次方程.(重点) 3.理解并会计算一元二次方程根的判别式. 4.会用判别式判断一元二次方程的根的情况.,导入新课,复习引入,1.用配方法解一元二次方程的步骤有哪几步?,2.如何用配方法解方程2x2+4x+1=0?,导入新课,问题:老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小红突然站起来说出每个方程解的情况,你想知道她是如何判断的吗。
4、21.2.2 公式法基础闯关全练拓展训练1.(2016 湖南常德临澧模拟)一元二次方程 4x2-1=4x 的根的情况是( )A.有两个不相等的实数根B.只有一个实数根C.有两个相等的实数根D.没有实数根2.(2016 山东新泰期末)若关于 x 的一元二次方程(m-1)x 2+x+1=0 有实数根,则 m 的取值范围是( )A.m2 B.ma2+c2,则关于 x 的方程 ax2+bx+c=0 的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为 02.(2017 黑龙江齐齐哈尔中考,6,) 若关于 x 的方程 kx2-3x- =0 有实数根,则实数 k 的取94值范围是( )A.k=0 B.k -1 且 k0C.k-1 D.k-13.(20。
5、2121. .2 2 解解一元二次方程一元二次方程 21.2 21.2 解一元二次方程 21.2.2 21.2.2 公式法 人教版人教版 数学数学 九九年级年级 上册上册 2121. .2 2 解解一元二次方程一元二次方程 2 7 0 4 。
6、21.2.2 公式法测试时间:15 分钟一、选择题1.一元二次方程 x2- =2x 的解是( )14A.x= B.x= C.x= D.x=252 252 1+52 1522.(2018 辽宁葫芦岛建昌期末)一元二次方程 x2-4x+3=0 的解是( )A.x=1 B.x 1=-1,x2=-3 C.x=3 D.x 1=1,x2=33.(2018 广东汕头潮南期末)下列的一元二次方程中 ,有实数根的是( )A.x2-x+1=0 B.x 2=-x C.x 2-2x+4=0 D.(x-2) 2+1=04.(2018 四川泸州泸县一模)关于 x 的方程 x2+2 x-1=0 有两个不相等的实数根,则 k 的取值范围是( )A.k0 B.k0 C.k -1 D.k-1二、填空题5.一元二次方程 3x2-4x-2=0 的解是 . 6.关于 x 的方程 kx2-4x+3=0 。
7、21.2.2 公式法,1.理解一元二次方程求根公式的推导过程; 2.了解公式法的概念; 3.会熟练应用公式法解一元二次方程,(4)配方、用直接开平方法解方程.(x+ )2= -q,x2+px+( )2= -q+( )2,2、用配方法解一元二次方程的步骤: (1)把原方程化成 x2+px+q=0的形式; (2)移项整理 得 x2+px=-q; (3)在方程 x2+px=-q 的两边同加上一次项系数p的一半的平方;,1、请用配方法解一元二次方程2x2+4x+1=0,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0),解析:把方程两边都除以a,即 ( x + )2 =,移项,得 x2 + x= -,配方,得 x2 + x+( )2=- +( )2,。
8、212.2 公式法1知道一元二次方程根的判别式的概念2会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围3经历求根公式的推导过程并会用公式法解简单的一元二次方程一、情境导入老师写了 4 个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况(1)2x23 x40;(2)x2 x 0;14(3)x2 x10.解析:根据根的判别式我。