欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

22.1.2二次函数yax2的图象和性质教案

22.1.4 二次函数 y=ax2+bx+c 的图象和性质基础闯关全练拓展训练1.(2017 江苏南京栖霞二模)二次函数 y=ax2+bx+c(a0)的部分对应值如下表:x -3 -2 0 1 3 5 y 7 0 -8 -9 -5 7 则二次函数 y=ax2+bx+c 在 x=2 时,y= . 2.

22.1.2二次函数yax2的图象和性质教案Tag内容描述:

1、22.1.4 二次函数 y=ax2+bx+c 的图象和性质基础闯关全练拓展训练1.(2017 江苏南京栖霞二模)二次函数 y=ax2+bx+c(a0)的部分对应值如下表:x -3 -2 0 1 3 5 y 7 0 -8 -9 -5 7 则二次函数 y=ax2+bx+c 在 x=2 时,y= . 2.若 A(1,2),B(3,2),C(0,5),D(m,5)是抛物线 y=ax2+bx+c 上的四点,则 m= . 3.(2017 山东滨州阳信期中)如图 ,二次函数 y=ax2+bx+c 的图象经过 A,B,C 三点.(1)观察图象写出 A,B,C 三点的坐标, 并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴 .能力提升全练拓展训练1.(2017 浙江绍兴中考)矩形 ABCD 的两条对称轴为坐。

2、22.1.4二次函数y=ax2+bx+c的 图象和性质,第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次函数y=ax2+bx+c的图象和性质,情境引入,1.会用配方法或公式法将一般式yax2bxc化成顶点式y=a(x-h)2+k.(难点) 2.会熟练求出二次函数一般式yax2bxc的顶点坐标、对称轴.(重点),导入新课,复习引入,向上,向下,(h ,k),(h ,k),x=h,x=h,当xh时, y随着x的增大而增大.,当xh时, y随着x的增大而减小.,x=h时,y最小=k,x=h时,y最大=k,抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.,(0,0),y轴,0,(0,-5),y轴,-5,(-2,0),直线x=-。

3、22.1.3二次函数y=a(x-h)2+k的 图象和性质,第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次函数y=ax2+k的图象和性质,1.会画二次函数y=ax2+k的图象.(重点) 2.掌握二次函数y=ax2+k的性质并会应用.(难点) 3.理解y=ax与 y=ax+k之间的联系.(重点),情境引入,x,y,导入新课,做一做:画出二次函数 y=2x , y=2x2+1 ,y=2x2-1的图象,并考虑它们的开口方向、对称轴和顶点坐标、顶点高低、函数最值、函数增减性.,3.5,1,-0.5,1,-0.5,-1,3.5,5.5,1.5,3,1.5,1,3,5.5,讲授新课,y=2x2+1,y=2x2,y=2x2-1,观察上述图象,说说它有。

4、1二次函数 yax 2bxc 的图象和性质 同步练习题基础题知识点 1 二次函数 yax 2bxc 的图象和性质1二次函数 yx 24x5 的图象的对称轴为( )Ax4 Bx4Cx2 Dx22抛物线 yx 22x1 的顶点坐标是( )A(1,0) B(1,0)C(2,1) D(2,1)3在二次函数 yx 22x1 的图象中,若 y 随 x 的增大而增大,则 x 的取值范围是( )Ax1Cx14二次函数 yax 2bx1(a0)的图象经过点(1 ,1),则 ab1 的值是( )A3 B1C2 D35已知二次函数 yax 2bx。

5、1二次函数 yax 2k 的图象和性质 同步练习题基础题知识点 1 二次函数 yax 2k 的图象1在抛物线 yx 21 上的一个点是( )A(1,0) B(0,0)C(0,1) D(1,1)2抛物线 yx 21 的图象大致是( )3将二次函数 y2x 21 的图象沿 y 轴向上平移 2 个单位,则所得图象对应的函数表达式为_4填写下列抛物线的开口方向、对称轴、顶点坐标以及最值抛物线 开口方向 对称轴 顶点坐标 最值y2x 22y5x 23y x2115y x24125在同一直角坐标系中画出 y2x 2,y2x 23 的图象(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线 y2x 23 与抛物线 y2x 2 的图象有什么关系。

6、26.2.1 二次函数 yax 2 的图象与性质知识点 1 二次函数 yax 2 的图象1二次函数 y5x 2 的图象开口_,对称轴为_,顶点坐标为_2抛物线 yax 2(a0 时,若 x1x2,则 y1_y2; 当 xx2,则 y1_y2.(填“”或“0 时,y 随 x 的增大而增大;(4)当 x0 时,y 有最小值其中说法正确的有( )A1 个 B2 个 C3 个 D4 个92017连云港已知抛物线 yax 2(a0) 经过 A(2,y 1),B(1,y 2)两点,则下列关系式一定正确的是( )Ay 10y2 By 20y1Cy 1y20 Dy 2y1010已知抛物线 yax 2 经过点(1,3)(1)求 a 的值;(2)当 x3 时,求出 y 的值;(3)说出此二次函数的三条性质11如图 。

7、第 3 课时 二次函数 ya(xh) 2k 的图象和性质1会用描点法画出 y a(x h)2 k的图象2掌握形如 y a(x h)2 k的二次函数图象的性质,并会应用3理解二次函数 y a(x h)2 k与 y ax2之间的联系一、情境导入对于二次函数 y( x1) 22 的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数 y a(x h)2 k的图象和性质【类型一】二次函数 y a(x h)2 k 的图象求二次函数 y x22 x1 的顶点坐标、对称轴及其最值解析:把二次函数 y x22 x1 化为 y a(x。

8、第 2 课时 二次函数 y a(x h)2的图象和性质1会用描点法画出 y a(x h)2的图象2掌握形如 y a(x h)2的二次函数图象的性质,并会应用3理解二次函数 y a(x h)2与 y ax2之间的联系一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过从如图所示的直角坐标系中,你能得到函数图象解析式吗?二、合作探究探究点:二次函数 y a(x h)2的图象和性质【类型一】 y a(x h)2的图象与性质的识别已知抛物线 y a(x h)2(a0)的顶点坐标是(2,0),且图象经过。

9、第 2 课时 二次函数 yax 2(a0)的图象与性质知识要点分类练 夯实基础知识点 1 二次函数 yax 2(a0 Bx2Cx0 解析 因为 y5x 2 的二次项系数小于 0,所以抛物线的开口向下,y 有最大值4D 解析 二次函数 yax 2(a0) 的图象的顶点坐标为(0,0),其最大值为 y0.5C 6.B7D 解析 函数 y2 x2 的对称轴为直线 x0,在对称轴的左侧,y 随 x 的增大而增大,在对称轴的右侧,y 随 x 的增大而减小,故 D 选项正确8C9D 解析 开口向下的抛物线上,离对称轴越远的点,其纵坐标越小10解:(1)y(k2)xk 2 k4 是二次函数,k 2k42,k 2k60,(k3)(k2) 0,k 3 或 k2.函数。

10、12 第 1 课时 二次函数 yax 2(a0)的图象与性质 知识要点分类练 夯实基础知识点 1 二次函数 yax 2(a0)的图象1二次函数 y2x 2 的图象可能是( )图 1212画出函数 y x2 的图象32知识点 2 二次函数 yax 2(a0)的性质3函数 y3x 2 的图象的开口向_,顶点坐标是_,对称轴是_,当 x_时,y 随 x 的增大而减小,当 x_时,y 随 x 的增大而增大4二次函数 y8x 2 的图象的开口方向是( )A向上 B向下C向上或向下 D不能确定5关于函数 y5x 2 的图象与性质的叙述,错误的是( )A其图象的顶点是原点By 有最大值C当 x0 时,y 随 x 的增大而增大D当 x2 Bm2 Cm0)过 A(。

11、2.2 二次函数的图象与性质,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=ax2和y=ax2+c的 图象与性质,北师大版九年级下册数学教学课件,学习目标,1.会画二次函数y=ax2和y=ax2+c的图象.(难点) 2.掌握二次函数y=ax2和y=ax2+c的性质并会应用.(重点) 3.比较函数y=ax2与y=ax2+c的联系.,导入新课,情境引入,门禁反映了图形的平移,大家还记得平移的要点吗?,羽毛球的运动轨迹可以用y=ax2的图象刻画,大家能回忆出二次函数y=x2的性质吗?,如果二次函数y=ax2的图象与平移碰撞在一起,会擦出怎样的火花呢?让我们拭目以。

12、2 22 2. .1 1 二次函数的二次函数的图像和性质图像和性质 22.1 22.1 二次函数二次函数的图像和性质的图像和性质 22.1.2 22.1.2 二次函数二次函数yax2 2的的 图像图像和性质和性质 人教版人教版 数学数学 九。

13、2.2 二次函数的图象与性质二次函数的图象与性质 第第 2 课时课时 二次函数二次函数 y=ax2和和 y=ax2+c 的图象与性质的图象与性质 1能画出二次函数 yax2和 yax2 c(a0)的图象;(重点) 2掌握二次函数 yax2与 yax2 c(a0)图象之间的联系;(重点) 3能灵活运用二次函数 yax2和 y ax2c(a0)的知识解决简单的问题 (难点) 一、情境导入 在同一平面直角坐标系中,画出函数 y 2x2与 y2x22 的图象 观察这两个函数 图象,它们的开口方向、对称轴和顶点坐标 有哪些相同和不同之处?你能由此说出函 数 y2x2与 y2x22 的图象之间的关系 吗?本节就探讨二次函。

14、2.2 二次函数的图象与性质,第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次函数y=ax2和y=ax2+c的 图象与性质,学习目标,1.会画二次函数y=ax2和y=ax2+c的图象.(难点) 2.掌握二次函数y=ax2和y=ax2+c的性质并会应用.(重点) 3.比较函数y=ax2与y=ax2+c的联系.,导入新课,情境引入,门禁反映了图形的平移,大家还记得平移的要点吗?,羽毛球的运动轨迹可以用y=ax2的图象刻画,大家能回忆出二次函数y=x2的性质吗?,如果二次函数y=ax2的图象与平移碰撞在一起,会擦出怎样的火花呢?让我们拭目以待吧!,讲授新课,合作探究,画出函。

15、221.4 二次函数 yax2bxc 的图象和性质第 1 课时 二次函数 yax2bxc 的图象和性质1会画二次函数 y ax2 bx c 的图象2熟记二次函数 y ax2 bx c 的顶点坐标与对称轴公式3用配方法求二次函数 y ax2 bx c 的顶点坐标与对称轴一、情境导入火箭被竖直向上发射时,它的高度 h(m)与时间 t(s)的关系可以近似用h5 t2150 t10 表示那么经过多长时间,火箭达到它的最高点?二、合作探究探究点一:二次函数 y ax2 bx c 的图象和性质【类型一】二次函数图象的位置与系数符号互判如图,二次函数 y ax2 bx c 的图象开口向上,图象经过点(1,2)和(1,0)且与 y 。

16、221.3 二次函数 ya(x h )2k 的图象和性质第 1 课时 二次函数 y ax2 k 的图象和性质1会用描点法画出 y ax2 k 的图象2掌握形如 y ax2 k 的二次函数图象的性质,并会应用3理解二次函数 y ax2 k 与 y ax2之间的联系一、情境导入在边长为 15cm 的正方形铁片中间剪去一个边长为 x(cm)的小正方形铁片,剩下的四方框铁片的面积 y(cm2)与 x(cm)的函数关系式是什么?它的顶点坐标是什么?二、合作探究探究点一:二次函数 y ax2 k 的图象与性质【类型一】 y ax2 k 的图象与性质的识别若二次函数 y ax22 的图象经过点(2,10),则下列说法错误的是( )A 。

17、22.1.2 二次函数 y=ax2的图象和性质基础闯关全练拓展训练1.(2018 安徽宣城宣州月考)在二次函数 y=m 的图象的对称轴左侧,y 随 x 的增大而增23大,则 m 的值为( )A.m0 B.m= C.m=5 D.m=-5 52.(2017 天津河西期中)下列二次函数的图象中 ,开口最大的是( )A.y=x2 B.y=2x 2 C.y= x2 D.y=-x 211003.若点 A(-2,a)在抛物线 y=-5x2 上,则 A 关于 y 轴对称点的坐标是 . 4.对于二次函数 y=ax2(a0),当 x 取 x1,x2(x1x2)时, 函数值相等,则当 x 取 x1+x2 时,函数值为 .能力提升全练拓展训练1.下列说法错误的是( )A.二次函数 y=3x2 中,当 x0 时,y 随 x 的增。

18、第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,22.1.2 二次函数y=ax2的图象和性质,学习目标,1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax的图象,概括出图象的特点.(难点) 3.掌握形如y=ax的二次函数图象的性质,并会应用.(难点),导入新课,情境引入,讲授新课,例1 画出二次函数y=x2的图象.,9,4,1,0,1,9,4,典例精析,1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:,2. 描点:根据表中x,y的数值在坐标平面中描点(x,y),3. 连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图。

19、22.1.2 二次函数yax2的图象,1.知道二次函数的图象是抛物线; 2.会画y=ax2的图象,并能结合图象理解y=ax2的性质.,一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?,列表,描点,连线,思考,你会用描点法画二次函数y=x2的图象吗?,9,4,1,1,0,4,9,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,描点,连线,y=x2,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,这条抛物线关于y轴对称,y轴就是它的对称轴.,对称轴与抛物 线的交点叫做 抛物线的顶点, 。

20、22.1.2 二次函数 yax 2的图象和性质01 基础题知识点 1 二次函数 yax 2的图象1如图,函数 y2x 2 的图象是(C)ABCD2函数 yaxa 2 是二次函数,当 a 时,其图象开口向上;当 a 时,其图象开口2 2向下3填写下列抛物线的开口方向、对称轴、顶点坐标及最值抛物线 开口方向 对称轴 顶点坐标 最值yx 2 向上 y 轴 (0,0) 最小值 0yx 2 向下 y 轴 (0,0) 最大值 0y x215向上 y 轴 (0,0) 最小值 0y x215向下 y 轴 (0,0) 最大值 04.已知二次函数 yax 2 的图象经过点 A(1, )12(1)求这个二次函数的解析式并画出其图象;(2)请说出这个二次函数图象的顶点。

【22.1.2二次函数yax2的图象和性质教案】相关PPT文档
2021年人教版九年级上22.1.2二次函数y=ax2的图像和性质ppt课件
北师大版九年级下数学《2.2.2二次函数y=ax2和y=ax2+c的图象与性质》课件
【人教版】2018年秋九年级数学上册《22.1.2二次函数y=ax2的图象和性质》ppt课件
人教版数学九年级上22.1.2二次函数y=ax2的图象课件
【22.1.2二次函数yax2的图象和性质教案】相关DOC文档
人教版九年级上《二次函数y=ax2+k的图象和性质》同步练习(含答案)
《22.1.3.3二次函数y=a(x-h)2+k的图象和性质》教案
《22.1.3.2二次函数y=a(x-h)2的图象和性质》教案
《22.1.4.1二次函数y=ax2+bx+c的图象和性质》教案
《22.1.3.1二次函数y=ax2+k的图象和性质》教案
人教版九年级上数学《22.1.2二次函数y=ax2的图象和性质》练习题(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开